
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (8): 146-158.DOI: 10.19491/j.issn.1001-9278.2022.08.023
汤小明1, 曹宁1, 蒋岳航1, 王倩1, 王志彦2, 李建华2, 王亚涛2(), 连慧琴1(
), 汪晓东3, 崔秀国1
收稿日期:
2022-03-21
出版日期:
2022-08-26
发布日期:
2022-08-22
通讯作者:
王亚涛(1968—),男,正高级工程师,从事化工技术材料研发,wangyatao@kailuan.com.cn基金资助:
TANG Xiaoming1, CAO Ning1, JIANG Yuehang1, WANG Qian1, WANG Zhiyan2, LI Jianhua2, WANG Yatao2(), LIAN Huiqin1(
), WANG Xiaodong3, CUI Xiuguo1
Received:
2022-03-21
Online:
2022-08-26
Published:
2022-08-22
Contact:
WANG Yatao, LIAN Huiqin
E-mail:wangyatao@kailuan.com.cn;lianhuiqin@bipt.edu.cn
摘要:
介绍了质子交换膜的分类,综述了主链型聚砜质子交换膜、侧链型聚砜质子交换膜、无机掺杂复合型聚砜质子交换膜等聚砜类燃料电池质子交换膜的最新研究进展,全面阐述了磺化聚砜的形貌、结构对材料物理化学性能的影响,并展望了聚砜类燃料电池质子交换膜的发展前景。
中图分类号:
汤小明, 曹宁, 蒋岳航, 王倩, 王志彦, 李建华, 王亚涛, 连慧琴, 汪晓东, 崔秀国. 聚砜类燃料电池质子交换膜研究进展[J]. 中国塑料, 2022, 36(8): 146-158.
TANG Xiaoming, CAO Ning, JIANG Yuehang, WANG Qian, WANG Zhiyan, LI Jianhua, WANG Yatao, LIAN Huiqin, WANG Xiaodong, CUI Xiuguo. Research progress in polysulfone for proton⁃exchange membrane fuel cell[J]. China Plastics, 2022, 36(8): 146-158.
类型 | 名称 | 厚度/μm | 拉伸强度/MPa | IEC/mmol·g-1 | 吸水率/% | 质子电导率/S·cm-1 |
---|---|---|---|---|---|---|
全氟质子 交换膜 | Nafion117[ | 175 | 17.5 | 0.90 | 19.5(30 ℃) | 0.013 3(30 ℃、100 %RH) |
Nafion211[ | 25.4 | — | 0.98 | — | 0.06(30 ℃、95 %RH) | |
部分含氟质子 交换膜 | sPEPOF⁃25[ | — | — | 1.65 | 35(25 ℃) | 0.099(80 ℃) |
BP⁃60[ | 40~60 | 51.1 | 1.81 | 77.8(80 ℃) | 0.144(30 ℃) | |
碳氢质子 交换膜 | OSPN/PAEK⁃b⁃KSPAEK (Semi⁃IPN 24)[ | 180~200 | 21.8 | — | 38.2(30 ℃) | 0.046(30 ℃) |
SPI⁃NfF[ | 12 | 123.0 | 1.80 | 73.9(30 ℃) | 0.08(30 ℃、95 %RH) | |
PBI0.5⁃block⁃OPBI 0.5[ | 40 | 9.2 | — | - | 0.1(180 ℃、无水) | |
复合型聚砜 质子交换膜 | SPSF⁃graft⁃PPSF(P80S20)[ | — | 30.7 | — | 23.07 | 0.017 2(95 ℃、90 %RH) |
TDAP⁃graft⁃PSU[ | — | 3.5 | — | 186(85 %磷酸、25 ℃) | 0.034(120 ℃) | |
SPAES⁃TiO2/g⁃C3N4[ | 70 | 34.8 | 2.13 | 63.5(30 ℃) | 0.180(30 °C 100 %RH) | |
SPSF/ZrP⁃42[ | — | 47.0 | — | 38 | 0.156(80 ℃) | |
0.5 %(PDA⁃CNTs)/sPSF[ | — | — | — | 26(25 ℃) | 0.121(80 ℃) | |
SPEAS⁃HA⁃GO⁃0.5[ | 15~20 | 55.0 | — | 75.9(30 ℃) | 0.017(90 ℃、50 %RH) | |
Cell⁃UiO⁃66⁃NH2⁃5/SPSF[ | — | — | 1.15 | 25(40 ℃) | 0.196(80 ℃、100 %RH) |
类型 | 名称 | 厚度/μm | 拉伸强度/MPa | IEC/mmol·g-1 | 吸水率/% | 质子电导率/S·cm-1 |
---|---|---|---|---|---|---|
全氟质子 交换膜 | Nafion117[ | 175 | 17.5 | 0.90 | 19.5(30 ℃) | 0.013 3(30 ℃、100 %RH) |
Nafion211[ | 25.4 | — | 0.98 | — | 0.06(30 ℃、95 %RH) | |
部分含氟质子 交换膜 | sPEPOF⁃25[ | — | — | 1.65 | 35(25 ℃) | 0.099(80 ℃) |
BP⁃60[ | 40~60 | 51.1 | 1.81 | 77.8(80 ℃) | 0.144(30 ℃) | |
碳氢质子 交换膜 | OSPN/PAEK⁃b⁃KSPAEK (Semi⁃IPN 24)[ | 180~200 | 21.8 | — | 38.2(30 ℃) | 0.046(30 ℃) |
SPI⁃NfF[ | 12 | 123.0 | 1.80 | 73.9(30 ℃) | 0.08(30 ℃、95 %RH) | |
PBI0.5⁃block⁃OPBI 0.5[ | 40 | 9.2 | — | - | 0.1(180 ℃、无水) | |
复合型聚砜 质子交换膜 | SPSF⁃graft⁃PPSF(P80S20)[ | — | 30.7 | — | 23.07 | 0.017 2(95 ℃、90 %RH) |
TDAP⁃graft⁃PSU[ | — | 3.5 | — | 186(85 %磷酸、25 ℃) | 0.034(120 ℃) | |
SPAES⁃TiO2/g⁃C3N4[ | 70 | 34.8 | 2.13 | 63.5(30 ℃) | 0.180(30 °C 100 %RH) | |
SPSF/ZrP⁃42[ | — | 47.0 | — | 38 | 0.156(80 ℃) | |
0.5 %(PDA⁃CNTs)/sPSF[ | — | — | — | 26(25 ℃) | 0.121(80 ℃) | |
SPEAS⁃HA⁃GO⁃0.5[ | 15~20 | 55.0 | — | 75.9(30 ℃) | 0.017(90 ℃、50 %RH) | |
Cell⁃UiO⁃66⁃NH2⁃5/SPSF[ | — | — | 1.15 | 25(40 ℃) | 0.196(80 ℃、100 %RH) |
1 | JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton⁃exchange membrane fuel cells[J]. Nature, 2021, 595: 361⁃369. |
2 | Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy⁃duty transportation[J]. Nature Energy, 2021, 6(5): 462⁃474. |
3 | XIAO F, WANG Y C, WU Z P, et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells[J]. Advanced Materials, 2021, 33(50):2006292. |
4 | LI Y X, LIANG L, LIU C, et al. Self⁃healing proton⁃exchange membranes composed of nafion⁃poly(vinyl alcohol) complexes for durable direct methanol fuel cells.[J]. Advanced Materials, 2018, 30(25): 1707146. |
5 | KENNETH⁃AMAURITZ, ROBERT⁃BMOORE. State of understanding of nafion[J]. Chemical Review, 2004(10): 4 535⁃4 586. |
6 | TALUKDAR K, GAZDZICKI P, FRIEDRICH K A. Comparative investigation into the performance and durability of long and short side chain ionomers in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2019, 439: 227078. |
7 | SIRACUSANO S, BAGLIO V, DIJK N, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short⁃side chain perfluorosulfonic ionomer[J]. Applied Energy, 2017, 192: 477⁃489. |
8 | OKONKWO P C, IBEN BELGACEM, EMORI W, et al. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27 956⁃27 973. |
9 | YOON K R, LEE K A, JO S, et al. Mussel⁃inspired polydopamine⁃treated reinforced composite membranes with self⁃supported CeOx radical scavengers for highly stable PEM fuel cells[J]. Advanced Functional Materials, 2019, 29(3): 1 806 929⁃1 806 929. |
10 | WANG Y, DIAZ D F R, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells⁃a review[J]. Materials Today, 2019, 32(7), 178⁃203. |
11 | MIRFARSI S H, PARNIAN M J, ROWSHANZAMIR S, et al. Current status of cross⁃linking and blending approaches for durability improvement of hydrocarbon⁃based fuel cell membranes[J]. International Journal of Hydrogen Energy, 2022,47(27): 13 460⁃13 489. |
12 | COLBOW V I, BEATTIE P, HOLDCROFT S. Solid⁃state electrochemical oxygen reduction at Pt∣Nafion® 117 and Pt∣BAM3G™ 407 interfaces[J]. Journal of Electroanalytical Chemistry, 1998, 458(1): 1⁃5. |
13 | ADHIKARI S, PAGELS M K, JEON J Y, et al. Ionomers for electrochemical energy conversion & storage technologies[J]. Polymer, 2020, 211: 123080. |
14 | 宫飞祥, 齐永红, 薛群翔. 含氟磺化双三蝶烯型聚芳醚砜质子交换膜的制备及性能[J]. 高等学校化学学报, 2014, 35(2): 433⁃439. |
GONG F X, QI Y H, XUE F X. Synthesis and properties of fluorinated poly(arylene ether sulfone) s with sulfonated pentiptycene pendants as proton exchange membranes[J]. Chemical Journal of Chinese Universities, 2014, 35(2): 433⁃439. | |
15 | 费哲君, JUNGMinsuk, 张雪飞, 等. 含氟聚芴醚噁二唑质子交换膜的性能[J]. 化工学报, 2015, 66(2): 445⁃449. |
FEI Z J, MINSUK J, ZHANG X F, et al. Properties of fluorinated poly fluorene ether oxadiazole proton exchange membrane[J]. CIESC Journal, 2015, 66(2): 445⁃449. | |
16 | 付志男, 谈云龙, 肖谷雨, 等. 含全氟联苯结构的磺化聚二氮杂萘酮醚氧膦质子交换膜的制备与性能[J]. 高等学校化学学报, 2021, 42(8): 2 635⁃2 642. |
FU Z N, TAN Y L, XIAO G Y, et al. Synthesis and properties of sulfonated poly(phthalazinone ether phosphine oxide)s with perfluorobiphenyl moieties for proton exchange membranes[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2 635⁃2 642. | |
17 | RAFIDAH R. S. R, W. R, KHALID M,et al. Recent progress in the development of aromatic polymer⁃based proton exchange membranes for fuel cell applications[J]. Polymers, 2020, 12(5): 1061. |
18 | SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon⁃based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Review, 2017, 117(6): 4 759⁃4 805. |
19 | PEIGHAMBARDOUST S J, ROWSHANZAMIR R, AMJADI R. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9 349⁃9 384. |
20 | KANG K, KIM D. Toughened polymer electrolyte membranes composed of sulfonated poly(arylene ether ketone) block copolymer and organosiloxane network for fuel cell[J]. Solid State Ionics, 2019, 335: 23⁃31. |
21 | YU L, YUE B H, YAN L M, et al. Proton conducting composite membranes based on sulfonated polysulfone and polysulfone⁃g⁃(phosphonated polystyrene) via controlled atom⁃transfer radical polymerization for fuel cell applications[J]. Solid State Ionics, 2019, 338: 103⁃112. |
22 | LIAQAT K, REHMAN W, SAEED S, et al. Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications[J]. Solid State Ionics, 2018,319: 141⁃147. |
23 | ITO G, TANAKA M, KAWAKAMI H. Sulfonated polyimide nanofiber framework: evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells[J]. Solid State Ionics, 2018,317: 244⁃255. |
24 | LI G Q, KUJAWSKI W, RYNKOWSKA E. Advancements in proton exchange membranes for high⁃performance high⁃temperature proton exchange membrane fuel cells (HT⁃PEMFC)[J]. Reviews in Chemical Engineering, 2020: 327⁃346. |
25 | PAN M Z, PAN C J, LI C, et al. A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability[J]. Renewable and Sustainable Energy Reviews, 2021, 141(25):110771. |
26 | WANG L, LIU Z R, NI J P, et al. Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high⁃temperature fuel cells[J]. Journal of Membrane Science, 2019, 572: 350⁃357. |
27 | RAJANGAM V, ATCHUDAN R, KIM H, et al. Recent advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs and AMFCs) applications: a critical review[J]. Polymers, 2022, 14(2): 300. |
28 | BAE B, MIYATAKE K, WATANABE M. Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s[J]. Macromolecules, 2009, 42(6): 1 873⁃1 880. |
29 | GONG F X, ZHANG S B. Synthesis of poly(arylene ether sulfone)s with locally and densely sulfonated pentiptycene pendants as highlyconductive polymer electrolyte membranes[J]. Journal of Power Sources, 2011, 196(23): 9 876⁃9 883. |
30 | 谢伟芳. 多嵌段磺化聚醚砜质子交换膜材料的制备及性能研究[J]. 膜科学与技术, 2018, 38(6): 63⁃68. |
XIE W F. Preparation and properties of multi⁃lock sulfonated polyethersulfone proton exchange membrane mate⁃rials[J]. Membrane Science and Technology, 2018, 38(6): 63⁃68. | |
31 | 侯敬贺, 刘闪闪, 孙翔, 等. 主链组成对低磺化度磺化芳香族聚合物质子交换膜性能的影响[J]. 化工进展, 2019, 38(4): 1 853⁃1 861. |
HOU J H, LIU S S, SUN X, et al. [J]. Effect of main chain composition on the performance of proton exchange membrane of sulfonated aromatic polymer with low degree of sulfonation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1 853⁃1 861. | |
32 | DAS S, REIS A, BERRY K. Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 193(2): 691⁃698. |
33 | MAMLOUK M, SCOTT K, PILDITCH S. Modelling and experimental validation of a high temperature polymer electrolyte fuel cell[J]. Journal of Applied Electrochemistry, 2007, 37(11): 1 245⁃1 259. |
34 | LEE S Y, YASUDA T, WATANABE M. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non⁃humidified fuel cells[J]. Journal of Power Sources, 2009, 195(18): 5 909⁃5 914. |
35 | BAE B, YODA T, MIYATAKE K, et al. Proton⁃conductive aromatic ionomers containing highly sulfonated blocks for high⁃temperature⁃operable fuel cells[J]. Angewandte Chemie International Edition, 2010, 49(2): 317⁃320. |
36 | 乔宗文, 刘耀鹏, 陈涛. 微相分离程度对磺化聚砜质子交换膜质子质子传导率的影响[J]. 化学工程师, 2017, 31(8): 16⁃19. |
QIAO Z W, LIU Y P, CHEN T, et al. Effect of degree of micro⁃phase separation on proton conductivity of proton exchange membrane[J]. Chemical Engineer, 2017, 31(8): 16⁃19. | |
37 | 乔宗文, 赵本波. 苯磺酸型侧链磺化聚砜质子交换膜的制备及性能研究[J]. 塑料科技,2020, 48(6): 29⁃33. |
QIAO Z W, ZHAO B B. Preparation and properties of benzenesulfonic acid side chain type sulfonated polysulfone proton exchange membranes[J]. Plastics Science and Technology, 2020, 48(6): 29⁃33. | |
38 | 乔宗文. 基于后磺化的萘磺酸型磺化聚砜质子交换膜的性能[J]. 中国塑料, 2019, 33(6): 38⁃43. |
QIAO Z W. Properties of sulfonated polysulfone proton exchange membranes based on post⁃sulfonation[J]. China Plastics, 2019, 33(6): 38⁃43. | |
39 | 周远鹏, 汪称意, 陶正旺, 等. 一类低溶胀率磺化聚芳醚砜质子交换膜材料的制备及性能[J]. 高分子材料科学与工程, 2019, 35(12): 22⁃29. |
ZHOU Y P, WANG C Y, TAO Z W, et al. Preparation and properties of sulfonated poly(aryl sulfone)s with low swelling ratio for proton exchange membrane[J]. Polymer Materials Science & Engineering, 2019, 35(12): 22⁃29. | |
40 | ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri⁃functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019,572:496⁃503. |
41 | HE F G, WANG S P, YUAN D, et al. Crosslinked poly(arylene ether sulfone) block copolymers containing quinoxaline crosslinkage and pendant butanesulfonic acid groups as proton exchange membranes[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25 262⁃25 275. |
42 | 严小波, 张虚略, 袁祖凤, 等. 侧链磺化型含氟聚芳醚质子交换膜的制备及性能[J]. 高分子学报, 2016, 5: 577⁃583. |
YAN X B, ZHANG X L, YUAN Z F, et al. Preparation and properties of proton exchange membranes based on side⁃chain type fluorinated sulfonated poly(aryl ether)s[J]. Acta Polymerica Sinica, 2016, 5: 577⁃583. | |
43 | KRAYTSBERG A, EIN⁃ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy Fuels, 2014, 28(12): 7 303⁃7 330. |
44 | FAN C Y, PENG Q, WU H, et al. A quantum dot intercalated robust covalent organic framework membrane for ultrafast proton conduction[J]. Journal of Materials Chemi⁃stry A, 2022,10: 6 616⁃6 622. |
45 | INGABIRE P B, HARAGIRIMANA A, LIU Y, et al. Titanium oxide/graphitic carbon nitride nanocomposites as fillers for enhancing the performance of SPAES membranes for fuel cells[J]. Journal of Industrial and Enginee⁃ring Chemistry, 2020, 91(25): 213⁃222. |
46 | OZDEN A, ERCELIK M, DEVRIM Y, et al. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells[J]. Electrochimica Acta, 2017, 256: 196⁃210. |
47 | ALTAF F, GILL R, BATOOL R, et al. Synthesis and applicability study of novel poly(dopamine)⁃modified carbon nanotubes based polymer electrolyte membranes for direct methanol fuel cell[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104118. |
48 | MARTINEZ⁃MORLANES M J, TORRE GAMARRA C, PÉREZ⁃PRIOR M T. Sulfonated polysulfone/TiO2(B) nanowires composite membranes as polymer electrolytes in fuel cells[J]. Polymers, 2021, 13(12): 2030. |
49 | DING F C, HU H, DING H, et al. Sulfonated poly(fluorene ether ketone) (spfek)/α⁃zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications[J]. Advanced Composites and Hybrid Materials, 2020, 3(4): 546⁃550. |
50 | KIM K, BAE J, LIM M, et al. Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications[J]. Journal of Membrane Science, 2017, 525: 125⁃134. |
51 | LI X Y, ZHANG Z X, XIE Z, et al. High performance and self⁃humidifying of novel cross⁃linked and nanocomposite proton exchange membranes based on sulfonated polysulfone[J]. Nanomaterials, 2022, 12(5): 841. |
52 | WANG S B, LIN Y, YANG J, et al. UiO⁃66⁃NH2 Functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane[J]. International Journal of Hydrogen Energy, 2021, 46(36): 19 106⁃19 115. |
53 | ROSHANRAVAN B, YOUNESI H, ABDOLLAHI M, et al. Incorporating sulfonated MIL⁃100(Fe) in sulfonated polysulfone for enhancing microbial fuel cell performance[J]. Fuel, 2022, 312(21): 122962. |
54 | PERON J, MANI A, ZHAO X S, et al. Properties of nafion NR⁃211 membranes for PEMFCs[J]. Journal of Membrane Science, 2010, 356(1): 44⁃51. |
55 | MOHAMMADI M, MEHDIPOUR⁃ATAEI S. Durable sulfonated partially fluorinated polysulfones as membrane for PEM fuel cell[J]. Renewable Energy, 2020, 158(25): 421⁃430. |
56 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469⁃477. |
SHAO Z G, YI B L. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469⁃477. | |
57 | 杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6⁃20. |
DU Z X. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6⁃20. | |
58 | 邢丹敏, 刘富强, 于景荣, 等. 磺化聚砜膜的燃料电池性能初步研究[J]. 膜科学与技术, 2002, 5: 12⁃16. |
XING D M, LIU F Q, YU J R, et al. Primary study on performance of sulfonated polysulfone membranes for fuel cells[J]. Membrane Science and Technology, 2002, 5: 12⁃16. | |
59 | 陈康成, 白文馨, 赵之平, 等. 羰基和砜基共交联磺化聚酰亚胺质子交换膜的制备及燃料电池性能[J]. 高等学校化学学报, 2015, 36(4): 781⁃787. |
CHEN K C, BAI W X, ZHAO Z P, et al. Preparation and fuel cell performance of carbonyl and sulfone groups co⁃crosslinked sulfonated polyimide proton exchange membranes[J]. Chemical Journal of Chinese Universities, 2015, 36(4): 781⁃787. | |
60 | RAMBABU K, BHARATH G, ARANGADI A F, et al. ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29 668⁃29 680. |
61 | TANG H Y, GENG K, HU Y X, et al. Synthesis and properties of phosphonated polysulfones for durable high⁃temperature proton exchange membranes fuel cell[J]. Journal of Membrane Science, 2020, 605: 118107. |
62 | 王进, 刘瑞泉, 王吉德, 等. 磺化聚砜质子交换膜在低温常压电化学合成氨中的应用[J]. 科学通报, 2008, 9: 1 032⁃1 035. |
[1] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[2] | 王倩, 杨康宁, 翟绍雄, 尹立坤, 何少剑, 林俊. 高质子传导率及尺寸稳定性复合质子交换膜制备及性能研究[J]. 中国塑料, 2022, 36(8): 62-68. |
[3] | 刘润清, 邢明明, 黄继明. PET在油茶壳炭C⁃SO3H基固体酸催化剂下的液化行为研究[J]. 中国塑料, 2021, 35(3): 105-111. |
[4] | 李海燕;崔业翔;王晴;李爽;李帅. 溶剂挥发法制备聚砜包覆桐油自修复微胶囊[J]. 中国塑料, 2016, 30(05): 34-40 . |
[5] | 张永明;邹静;苗宗成;赵阳. 直接甲醇燃料电池用Nafion/柱[5]芳烃复合膜的制备及其性能研究[J]. 中国塑料, 2016, 30(04): 69-75 . |
[6] | 王晓君;刘吉平;赵伟;毕晓露;王栋. 四唑基聚合物的研究进展[J]. 中国塑料, 2015, 29(11): 1-6 . |
[7] | 李海燕;王晴;崔业翔. 聚砜包覆双环戊二烯微胶囊的制备[J]. 中国塑料, 2015, 29(09): 27-31 . |
[8] | 侯宏英;孟瑞晋;高妍. 再铸全氟磺酸-聚四氟乙烯共聚物/磺化氧化锆复合膜的制备与性能研究[J]. 中国塑料, 2014, 28(06): 69-72 . |
[9] | 周蕊 魏荣卿 刘晓宁 陈新营. 磺化聚苯乙烯反应工艺研究进展[J]. 中国塑料, 2010, 24(11): 15-19 . |
[10] | 陈晓媛, 芦艾, 王港, 余雪江. 聚砜/聚苯硫醚共混物的动态黏弹行为及力学性能研究[J]. 中国塑料, 2007, 21(2): 45-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||