
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (10): 15-23.DOI: 10.19491/j.issn.1001-9278.2023.10.003
沈海娟1, 李承高2,3, 郭瑞2,3, 辛美音1, 黄翔宇1, 张中慧4, 咸贵军2,3()
收稿日期:
2023-04-17
出版日期:
2023-10-26
发布日期:
2023-10-23
通讯作者:
咸贵军(1972-),男,博士,教授,博士生导师,研究方向为土木工程纤维增强树脂复合材料与结构,gjxian@hit.edu.cn基金资助:
SHEN Haijuan1, LI Chenggao2,3, GUO Rui2,3, XIN Meiyin1, HUANG Xiangyu1, ZHANG Zhonghui4, XIAN Guijun2,3()
Received:
2023-04-17
Online:
2023-10-26
Published:
2023-10-23
Contact:
XIAN Guijun
E-mail:gjxian@hit.edu.cn
摘要:
针对碳/玻璃纤维增强复合材料锚固失效问题,研究了3种典型锚固系统的应力分布及锚固机理。研究发现,碳纤维层锚固系统由于界面脱黏及截面削弱导致锚固承载力较低;力学锚固系统易对杆体产生初始挤压损伤并形成应力集中;黏结型锚固系统由于杆体/黏结剂界面黏结强度较低而产生脱黏失效。针对上述3种锚固系统存在的截面削弱、应力集中及界面脱黏等问题,提出了考虑楔块挤压与树脂黏结的楔块⁃黏结复合型锚固系统,有限元模拟与拉伸试验结果表明,楔块⁃黏结复合型锚固系统锚具内应力分布均匀,杆体发生爆裂破坏,锚具内未出现杆体滑移,锚固系统极限锚固承载力为360.1 kN,有效地解决了复合材料混杂杆体的锚固难题。
中图分类号:
沈海娟, 李承高, 郭瑞, 辛美音, 黄翔宇, 张中慧, 咸贵军. 碳⁃玻璃纤维增强复合材料混杂杆体的锚固性能研究[J]. 中国塑料, 2023, 37(10): 15-23.
SHEN Haijuan, LI Chenggao, GUO Rui, XIN Meiyin, HUANG Xiangyu, ZHANG Zhonghui, XIAN Guijun. Study on anchoring performance of carbon⁃glass⁃fiber⁃reinforced polymer composite rods[J]. China Plastics, 2023, 37(10): 15-23.
构件名称 | 弹性模量E1/GPa | 泊松比 | 外径厚度/mm | 材料特性 |
---|---|---|---|---|
芯层CFRP | 170 | 0.15 | 12 | 弹性 |
皮层GFRP | 72 | 0.20 | 7 | 弹性 |
填充树脂 | 3.2 | 0.35 | 16(直筒) | 弹性 |
6~26(梯度) | ||||
锚具钢管 | 206 | 0.30 | 15 | 弹性 |
构件名称 | 弹性模量E1/GPa | 泊松比 | 外径厚度/mm | 材料特性 |
---|---|---|---|---|
芯层CFRP | 170 | 0.15 | 12 | 弹性 |
皮层GFRP | 72 | 0.20 | 7 | 弹性 |
填充树脂 | 3.2 | 0.35 | 16(直筒) | 弹性 |
6~26(梯度) | ||||
锚具钢管 | 206 | 0.30 | 15 | 弹性 |
样品编号 | 极限荷载/kN | 拉伸强度/GPa | 破坏模式 |
---|---|---|---|
1# | 371.3 | 1.31 | 爆裂 |
2# | 350.5 | 1.24 | 爆裂 |
3# | 358.5 | 1.27 | 爆裂 |
平均值 | 360.1 | 1.27 | - |
标准差 | 10.5 | 0.04 | - |
样品编号 | 极限荷载/kN | 拉伸强度/GPa | 破坏模式 |
---|---|---|---|
1# | 371.3 | 1.31 | 爆裂 |
2# | 350.5 | 1.24 | 爆裂 |
3# | 358.5 | 1.27 | 爆裂 |
平均值 | 360.1 | 1.27 | - |
标准差 | 10.5 | 0.04 | - |
1 | Zhang K, Zhang Q, Xiao J. Durability of FRP bars and FRP bar reinforced seawater sea sand concrete structures in marine environments[J]. Construction and Building Materials, 2022, 350: 128898. |
2 | Ganesan C, Joanna P S, Singh D. Fatigue life modeling of FRP composites: a comprehensive review[J]. Materials Today: Proceedings, 2021, 46: 555⁃561. |
3 | 莫明智. 碳纤维复合材料拉⁃拉疲劳损伤特性研究[D].南昌:南昌大学,2022. |
4 | 孙泽阳, 郑 忆, 吴 刚. 钢⁃连续纤维复合筋及其增强混凝土结构研究现状[J].南京工业大学学报(自然科学版),2021,43(4):425⁃434. |
SUN Z Y, ZHENG Y, WU G. Research status of steel⁃FRP composite bar and its reinforced concrete in civil engineering application [J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43( 4): 425⁃434. | |
5 | Hu W, Li Y, Yuan H. Review of experimental studies on application of FRP for strengthening of bridge structures[J]. Advances in Materials Science and Engineering, 2020: 1⁃21. |
6 | 孙照武. 纤维复合材料在桥梁工程中的应用研究[J].合成材料老化与应用,2022,51(4):124⁃126,64. |
SUN Z W. Application of fiber composites in bridge engineering [J]. Synthetic Materials Aging and Application, 2022,51(4):124⁃126,64. | |
7 | Vizentin G, Vukelic G. Marine environment induced failure of FRP composites used in maritime transport[J]. Engineering Failure Analysis, 2022, 137: 106258. |
8 | 吴超强, 王 俊, 李 帅, 等. 玻璃纤维增强复合材料⁃钢复合筋混凝土夹芯墙板抗弯性能[J].南京工业大学学报(自然科学版),2021,43(6):782⁃786. |
WU C Q, WANG J, LI S, et al. Bending behavior of concrete sandwich wall panels with GFRP⁃steel bar connectors [J]. Journal of Nanjing Tech University ( Natural Science Edition), 2021,43(6):782⁃786. | |
9 | Hegde S, Shenoy B S, Chethan K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 2019, 19: 658⁃662. |
10 | 徐浏清, 梁梦蝶, 江 镇, 等. 多轴向BFRP方管桁架K型节点性能分析[J].南京工业大学学报(自然科学版),2023,45(1):71⁃78. |
XU L Q, LIANG M D, JIANG Z, et al. Perofrmance of K⁃type joint of multi⁃dirextional BFRP square tube truss [J]. Journal of Nanjing Tech University (Natural Science Edition),2023,45(1):71⁃78. | |
11 | Fan W, Dang W, Liu T, et al. Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three⁃point bending load[J]. Materials & Design, 2019, 183: 108112. |
12 | Hung P, Lau K, Cheng L, et al. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications[J]. Composites Part B: Engineering, 2018, 133: 86⁃90. |
13 | 刘锦程, 邱 睿, 曹清林. 碳/玻混杂纤维复合材料力学性能与失效机理研究[J].化工新型材料,2022,50(11):153⁃157,162. |
LIU J C, QIU R, CAO Q L. Study on mechanical pro⁃perties and failure mechanism of carbon/glass hybrid fiber composites [J]. New Chemical Materials, 2022,50(11):153⁃157,162. | |
14 | 黄志超, 骆 强, 赖家美, 等. 环氧树脂/玻璃纤维/碳纤维混杂复合板低速冲击及损伤检测[J].中国塑料,2021,35(6):46⁃52. |
HUANG Z C, LUO Q, LAI J M, et al. Low⁃velocity impact and damage detection of epoxy/glass and carbon fiber composite plates [J]. China Plastics, 2021,35(6):46⁃52. | |
15 | Li C, Xian G, Li H. Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures[J]. Polymers, 2018, 10(6): 627. |
16 | Kar N K, Barjasteh E, Hu Y, et al. Bending fatigue of hybrid composite rods[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(3): 328⁃336. |
17 | Guo R, Xian G, Li C, et al. Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod[J]. Mechanics of Advanced Materials and Structures, 2022, 29(27): 6 288⁃6 300. |
18 | Schmidt J W, Bennitz A, Täljsten B, et al. Mechanical anchorage of FRP tendons⁃a literature review[J]. Construction and Building Materials, 2012, 32: 110⁃121. |
19 | Zhou J, Wang X, Peng Z, et al. Evaluation of a large⁃tonnage FRP cable anchor system: anchorage design and full⁃scale experiment[J]. Engineering Structures, 2022, 251: 113551. |
20 | 梅葵花, 李 宇, 贾文科, 等. 纤维增强复合材料缆索锚固系统研究与应用进展[J].土木工程学报,2023,56(4):83⁃102. |
MEI K K, LI Y, JIA W K,et al. Review on research and application of fiber reinforced polymer cables anchorage system [J]. China Civil Engineering Journal, 2023,56(4):83⁃102. | |
21 | 周竞洋, 汪 昕, 吴智深, 等. FRP拉索锚固体系优化及其静力性能评价[J].中国公路学报,2022,35(2):88⁃97. |
ZHOU J Y, WANG X, WU Z S, et al. Optimization and static behavior evaluation of fiber reinforced polymer cable anchor system [J]. China Civil Engineering Journal, 2022,35(2):88⁃97. | |
22 | 苏 捷, 李权浩, 方 志, 等. 高温下CFRP筋及其粘结型锚固系统的力学性能[J].复合材料学报,2022,39(11):5 300⁃5 310. |
SU J, LI Q H, FANG Z, et al. Mechanical properties of CFRP bar and bond⁃type anchorage system exposed to elevated temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5 300⁃5 310. | |
23 | Abdulhameed S S, Wu E, Ji B. Mechanical prestressing system for strengthening reinforced concrete members with prestressed carbon⁃fiber⁃reinforced polymer sheets[J]. Journal of Performance of Constructed Facilities, 2015, 29(3): 04014081. |
24 | Meier U, Meier H, Kim P. Anchorage device for high⁃performance fiber composite cables: U.S. Patent 5,713,169[P]. 1998⁃2⁃3. |
25 | 王安妮, 刘晓刚, 岳清瑞. 碳纤维复合材料拉索的锚固体系及服役性能研究进展[J].建筑结构学报,2022,43(9):45⁃54. |
WANG A N, LIU X G, YUE Q R. Research progress of carbon fiber reinforced polymer composite cable: anchorage system and service performance [J]. Journal of Building Structures, 2022,43(9):45⁃54. | |
26 | Cai D, Yin J, Liu R. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons[J]. Composites Part B: Engineering, 2015, 79: 530⁃534. |
27 | 李承高, 郭 瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形⁃挤压锚固机制[J].南京工业大学学报(自然科学版),2021,43(3):358⁃365. |
LI C G, GUO R, HUANG X Y,et al. Wedge⁃extrusion anchorage mechanism of pultruded CFRP plate [J]. Journal of Nanjing Tech University ( Natural Science Edition), 2021,43(3):358⁃365. |
[1] | 沈海娟 李承高 郭瑞 辛美音 黄翔宇 张中慧 咸贵军. 碳-玻璃纤维增强复合材料混杂杆体的锚固性能研究[J]. , 2023, 37(10): 15-23. |
[2] | 李兆璞, 武立文, 乔亮, 范峻铭, 张毅. 聚乙烯管道热熔焊接技术研究进展[J]. 中国塑料, 2022, 36(10): 104-116. |
[3] | 杨佳, 李坤, 李继功, 曹新鑫. 聚合物流体入口收敛流动的研究进展[J]. 中国塑料, 2015, 29(10): 14-19 . |
[4] | 梁畅 罗兵. 聚合物固体粒子在熔体中的流动和传热数值分析[J]. 中国塑料, 2011, 25(06): 97-101 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||