中国塑料 ›› 2025, Vol. 39 ›› Issue (8): 62-68.DOI: 10.19491/j.issn.1001-9278.2025.08.010

• 加工与应用 • 上一篇    下一篇

基于有限元模拟的非金属智能连续管承压力学行为研究

张学敏1(), 张雪茹1, 李厚补2(), 陈衍华1, 孙琦尧1   

  1. 1.长安大学材料科学与工程学院,西安 710064
    2.中国石油集团工程材料研究院有限公司,西安 710077
  • 收稿日期:2024-08-26 出版日期:2025-08-26 发布日期:2025-07-30
  • 通讯作者: 李厚补(1981—),男,教授级高工,从事油气田用非金属与复合材料管材研究, lihoubu@cnpc.com.cn
    E-mail:xueminzhang@chd.edu.cn;lihoubu@cnpc.com.cn
  • 作者简介:张学敏(1982—),女,副教授,从事材料失效分析及模拟仿真技术研究,xueminzhang@chd.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52274069);陕西省重点研发计划一般项目(2023?YBGY?177);长安大学中央高校基本科研业务费专项基金项目(300102314812)

Mechanical behavior of non⁃metallic intelligent coiled tubing under internal pressure based on finite element simulation

ZHANG Xuemin1(), ZHANG Xueru1, LI Houbu2(), CHEN Yanhua1, SUN Qiyao1   

  1. 1.School of Materials Science and Engineering,Chang'an University,Xi'an 710064,China
    2.CNPC Tubular Goods Research Institute,Xi'an 710077,China
  • Received:2024-08-26 Online:2025-08-26 Published:2025-07-30
  • Contact: LI Houbu E-mail:xueminzhang@chd.edu.cn;lihoubu@cnpc.com.cn

摘要:

采用有限元模拟研究了DN50/PN1.6 MPa非金属智能连续管在内压载荷下的力学行为,并分析了增强层中纤维体积分数、光纤不锈钢铠装层厚度及增强层层数等制造工艺参数对管道各结构层及管内缆线应力的影响。结果表明:DN50/PN1.6 MPa非金属智能连续管在2.5 MPa内压下(约1.5倍公称压力)管内缆线均处于弹性变形状态,可确保其功能性,正常服役;该结构管道的极限内压约为10 MPa,其失效形式为功能性损伤;在内压载荷下管内各结构层均呈现出螺旋式应力分布,管中缆线则呈现出高、低应力交替式的应力分布;增加增强层纤维体积分数和其层数均可以显著降低不锈钢铠装层及管内缆线在内压载荷下的应力以提高管道内压极限,但是增加不锈钢铠装层厚度对提升管道内压极限的贡献较小。此外,增加纤维体积分数在提高增强层承力的同时会促使其余各结构层处于较低应力水平,而增加不锈钢铠装层厚度及增强层层数则会降低所有结构层应力,其中增强层层数对结构层应力的影响更显著,因此在管道生产制造时应着重考虑增强层纤维体积分数和其层数的设计;针对本管道结构并综合考虑其内压极限和生产经济效益,选用增强层纤维体积分数为70 %,增强层层数为4层或6层,不锈钢铠装层厚度为0.25 mm的制造工艺参数较适宜。

关键词: 内压, 非金属智能连续管, 有限元模拟, 功能性损伤

Abstract:

In this study, the mechanical behavior of DN50/PN1.6 MPa non⁃metallic intelligent coiled tubing under internal pressure were investigated using finite element simulation. The effects of key manufacturing parameters, including fiber volume fraction in the reinforcement layer, thickness of the armored fiber optic layer, and the number of reinforcement layers, were analyzed in terms of stress distribution across structural layers and internal cables. Results showed that under an internal pressure of 2.5 MPa (1.5 times the nominal pressure), the cables remained in an elastic deformation state, ensuring functional integrity. The tubing’s ultimate internal pressure capacity reached approximately 10 MPa, at which point functional failure occurred. Stress analysis revealed a spiral distribution in structural layers and alternating high⁃low stress patterns in the cables. Increasing the fiber volume fraction and the number of reinforcement layers significantly reduced stress on the stainless steel armor layer and cables, enhancing pressure resistance. In contrast, increasing the armor layer thickness had a marginal effect. A higher fiber volume fraction improved the reinforcement layer’s load⁃bearing capacity while reducing stress in adjacent layers. Additionally, increasing both armor thickness and reinforcement layers lowered stress across all layers, with reinforcement layers exhibiting a more pronounced influence. For optimal performance and cost efficiency, the recommended manufacturing parameters include a fiber volume fraction of 70%, 4~6 reinforcement layers, and a stainless steel armor thickness of 0.25 mm.

Key words: internal pressure, non?metallic intelligent coiled tubing, finite element simulation, functional damage

中图分类号: