京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
›› 2024, Vol. 38 ›› Issue (6): 105-110.
Previous Articles Next Articles
Received:
2023-10-19
Revised:
2023-11-26
Online:
2024-06-26
Published:
2024-06-26
[1] 田虎虎, 曹鸿璋, 郭立影, 等. 完全生物降解聚乙醇酸研究进展 [J]. 橡塑技术与装备, 2021, 47(22): 9-15.Tian Huhu, Cao Hongzhang, Guo Liying, et al. Research progress of completely biodegradable polyglycolic acid[J]. Rubber and plastic technology and equipment, 2021, 47(22): 9-15.[2] 王淑敏, 商宽祥, 谢鸿洲, 等. 聚乙醇酸产业现状及发展前景 [J]. 化肥设计, 2021, 59(04): 1-4+11.Wang Shumin, Shang Kuanxiang, Xie Hongzhou, et al. Present situation and development prospect of polyglicolic acid[J]. Fertilizer design, 2021, 59(04): 1-4+11.[3] 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展 [J]. 中国塑料, 2022, 36(04): 166-74.Dong Luqian, Xu Fang, Weng Yunxuan. Research progress in modification and application of poly(glycolic acid) [J]. China Plastics, 2022, 36(04): 166-74.[4] de Beukelaer Herman, Hilhorst Marieke, Workala Yarek, et al. Overview of the mechanical, thermal and barrier properties of biobased and/or biodegradable thermoplastic materials [J]. Polym Test, 2022, 116.[5] G?ktürk Ersen, Pemba Alexander G., Miller Stephen A. E. Polyglycolic acid from the direct polymerization of renewable C1 feedstocks [J]. Polym Chem, 2015, 6(21): 3918-25.[6] Budak Kamil, Sogut Oguz, Sezer, Umran Aydemir. A review on synthesis and biomedical applications of polyglycolic acid [J]. J Polym Res, 2020, 27(8): 19.[7] Yamane Kazuyuki, Sato Hiroyuki, Ichikawa Yukio, et al. Development of an industrial production technology for high-molecular-weight polyglycolic acid [J]. Polym J, 2014, 46(11): 769-75.[8] K. Jim Jem, Tan Bowen. The Development and Challenges of Poly (lactic acid) and Poly (glycolic acid) [J]. Advanced Industrial and Engineering Polymer Research, 2020, [9] 谭博雯, 孙朝阳, 计扬. 聚乙醇酸的合成、改性与性能研究综述 [J]. 中国塑料, 2021, 35(10): 137-46.Tan Bowen, Sun Zhaoyang, Ji Yang. A review in synthesis and modification of poly(glycolic acid) [J]. China Plastics, 2021, 35(10): 137-46.[10] 郭琳, 姚俊杰, 杨仁俊, et al. 生物降解材料聚乙醇酸的产业化进程及展望 [J]. 合成纤维, 2022, 51(07): 13-8.Guo Lin, Yao Junjie, Yang Renjun, et al. Industrialition progress and prospect of biodegridable materials polyglycolic acid [J]. Synthetic Fibre, 2022, 51(07): 13-8.[11] Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering [J]. Macromol Biosci, 2002, 2(2): 67-77.[12] Unalan Ilke Uysal, Wan Chaoying, Figiel Lukasz, et al. Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide [J]. Nanotechnology, 2015, 26(27): 10.[13] Low Yan Jie, Andriyana Andri, Ang Bee Chin, et al. Bioresorbable and degradable behaviors ofPGA: Current state and future prospects [J]. Polym Eng Sci, 2020, 60(11): 2657-75.[14] Swider Edyta, Koshkina Olga, Tel Jurjen, et al. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications [J]. Acta Biomater, 2018, 73(38-51.[15] Gautier Estelle, Fuertes Patrick, Cassagnau Philippe, et al. Synthesis and Rheology of Biodegradable Poly(glycolic acid) Prepared by Melt Ring-Opening Polymerization of Glycolide [J]. J Polym Sci Pol Chem, 2009, 47(5): 1440-9.[16] Sato Harumi, Miyada Mai, Yamamoto Shigeki, et al. C-H???O (ether) hydrogen bonding along the (110) direction in polyglycolic acid studied by infrared spectroscopy, wide-angle X-ray diffraction, quantum chemical calculations and natural bond orbital calculations [J]. RSC Adv, 2016, 6(20): 16817-23.[17] Nishimura Fumita, Hoshina Hiromichi, Ozaki Yukihiro, et al. Isothermal crystallization of poly(glycolic acid) studied by terahertz and infrared spectroscopy and SAXS/WAXD simultaneous measurements [J]. Polym J, 2019, 51(2): 237-45.[18] Samantaray Paresh Kumar, Little Alastair, Haddleton David M., et al. Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications [J]. Green Chem, 2020, 22(13): 4055-81.[19] 祝桂香, 叶文亮. 生物可降解共聚酯PBST的合成、结构性能及应用研究进展 [J]. 化工与医药工程, 2022, 43(05): 1-6.Zhu Guixiang, Ye Wenliang. Research progress in synthesis, structure, properties and application of biodegradable copolyester PBST[J]. Synthetic Fiber Chemical and Pharmaceutical Engineering, 2022, 43(05): 1-6.[20] Xu Pengwu, Tan Shuai, Niu Deyu, et al. Highly Toughened Sustainable Green Polyglycolic Acid/Polycaprolactone Blends with Balanced Strength: Morphology Evolution, Interfacial Compatibilization, and Mechanism [J]. ACS Appl Polym Mater, 2022, 4(8): 5772-80.[21] Ellingford Christopher, Samantaray Paresh Kumar, Farris Stefano, et al. Reactive extrusion of biodegradable PGA/PBAT blends to enhance flexibility and gas barrier properties [J]. J Appl Polym Sci, 2022, 139(6): 11.[22] Yee Bond Tee, A. Talib Rosnita, Abdan Khalina, et al. Comparative study of chemical, mechanical, thermal and barrier properties of poly(lactic acid) plasticized with epoxidized soybean oil and epoxidized palm oil [J]. 2016, [23] Calvino Celine, Macke Nicholas, Kato Ryo, et al. Development, processing and applications of bio-sourced cellulose nanocrystal composites [J]. Prog Polym Sci, 2020, 103(21.[24] Steven M. J. Merritt, Wemyss Alan Matheson, Farris Stefano, et al. Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene Microparticles [J]. ACS Appl Polym Mater, 2020, 2 (2) , pp.725-731. [25] Standau Tobias, Nofar Mohammadreza, D?rr Dominik, et al. A Review on Multifunctional Epoxy-Based Joncryl? ADR Chain Extended Thermoplastics [J]. Polym Rev, 2022, 62(2): 296-350.[26] Xue Bin, He Hezhi, Huang Zhaoxia, et al. Fabrication of super-tough ternary blends by melt compounding of poly(lactic acid) with poly(butylene succinate) and ethylene-methyl acrylate-glycidyl methacrylate [J]. Compos Pt B-Eng, 2019, 172(743-9.[27] Wu Han, Wang Chunyu, Ning Zhenbo, et al. Ultra-toughened poly(glycolic acid)-based blends with controllable hydrolysis behavior fabricated via reactive compatibilization [J]. Eur Polym J, 2022, 181.[28] Wang Kai, Shen Jianing, Ma Zhao, et al. Preparation and Properties of Poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)/Polyglycolic Acid (PETG/PGA) Blends [J]. Polymers, 2021, 13(3): 20.[29] Shen Jianing, Wang Kai, Ma Zhao, et al. Biodegradable blends of poly(butylene adipate-co-terephthalate) and polyglycolic acid with enhanced mechanical, rheological and barrier performances [J]. J Appl Polym Sci, 2021, 138(43): 15.[30] Yang Fan, Zhang Caili, Ma Zhirui, et al. In Situ Formation of Microfibrillar PBAT in PGA Films: An Effective Way to Robust Barrier and Mechanical Properties for Fully Biodegradable Packaging Films [J]. ACS Omega, 2022, 7(24): 21280-90.[31] 段雪蕾, 陈兰兰, 孙峤昳, 等. 改性PGA热稳定性及动力学研究 [J]. 化工新型材料, 2021, 49(S1): 210-4.Duan Xuelei, Chen Lanlan, Sun Qiaoyi, et al. Investigation on thermal stability and kinetics of modified PGA[J]. New Chemical Materials, 2021, 49(S1): 210-4.[32] 陈启群. 助剂对生物降解高分子材料聚羟基乙酸的热稳定性的影响 [D]; 浙江大学, 2017.[33] Wei Chang, Guo Peng, Lyu Mingfu, et al. High Barrier Poly(Glycolic Acid) Modified Poly(Butylene Adipate-co- terephthalate) Blown Films and Accelerated Ultraviolet Degradability Evaluation [J]. ACS Appl Polym Mater, 2023, 5(5): 3457-67.[34] 陈兰兰, 孙小杰, 王荣, 等. 助剂复配对聚乙醇酸性能的影响 [J]. 塑料工业, 2021, 49(02): 145-9.Chen Lanlan, Sun Xiaojie, Wang Rong, et al. Efect of additive compound on the properties of polyglycolic acid[J]. Plastic Industry, 2021, 49(02): 145-9.[35] Sun Xiaojie, Chen Lanlan, Wang, Rong, et al. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti-hydrolysis agent [J]. J Appl Polym Sci, 2022, 139(25): 9.[36] 江猛, 刘胜峰, 孙小杰, 等. PGA/PBAT复合材料抗水解性能研究 [J]. 塑料科技, 2022, 50(07): 32-7.Jiang Meng, Liu Shengfeng, Sun Xiaojie, et al. Stud y on hydrolytoc resistance properties of PGA/PBAT composites[J]. Plastic Technology, 2022, 50(07): 32-7.[37] Tao Di, Higaki Yuji, Ma Wei, et al. Inorganic nanotube induced chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers [J]. Abstr Pap Am Chem Soc, 2013, 245.[38] Yang Haicun, Cai Zinan, Liu Haotian, et al. Compatibilization of polypropylene/poly(glycolic acid) blend with maleated poe/attapulgite hybrid compatibilizer: Evaluation of mechanical, thermal, rheological, and morphological characteristics [J]. J Polym Sci, 2020, 58(6): 903-13.[39] Tao Di, Higaki Yuji, Ma Wei, et al. Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers [J]. Polymer, 2015, 60(284-91. |
[1] | NIU He, LYU Mingfu, ZHANG Zongyin, XU Yaohui, XU Wei, ZHANG Shijun, GUO Peng. Application progress in additives in polyglycolic acid processing [J]. China Plastics, 2024, 38(6): 105-110. |
[2] | MA Chao, MA Lanrong, WEI Liao, YIN Huibo, LIN Xiang. A review of modification processing and water⁃soluble degradation ability of polyglycolic acid material [J]. China Plastics, 2022, 36(9): 74-84. |
[3] | TAN Bowen, SUN Zhaoyang, JI Yang. A Review in Synthesis and Modification of Poly(glycolic acid) [J]. China Plastics, 2021, 35(10): 137-146. |
[4] | FENG Shen, WEN Liang, SUN Zhaoyang, JI Yang. Properties and Applications of PGA/PBAT Composites [J]. China Plastics, 2020, 34(11): 36-40. |
[5] | . Study on Application of a Novel Multifunctional Additive for Polypropylene/Talcum Powder Composites [J]. China Plastics, 2017, 31(07): 114-120 . |
[6] | . Research Progress in Fabrication of Biodegradable Polycaprolactone Foams [J]. China Plastics, 2013, 27(02): 7-13 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||