中国塑料 ›› 2020, Vol. 34 ›› Issue (1): 69-75.DOI: 10.19491/j.issn.1001-9278.2020.01.012

• 加工与应用 • 上一篇    下一篇

金属基聚合物内衬复合压力容器界面剥离失效及预防

周国发1,傅彬益1,段治锋2   

  1. 1. 南昌大学资源环境与化工学院
    2. 南昌大学
  • 收稿日期:2019-08-17 修回日期:2019-11-29 出版日期:2020-01-26 发布日期:2020-01-17
  • 基金资助:
    国家自然科学基金

Interface Peeling Failure and Prevention of Metal?based Polymer Lined CompositePressure Vessel

  • Received:2019-08-17 Revised:2019-11-29 Online:2020-01-26 Published:2020-01-17
  • Contact: Guofa ZHOU E-mail:ndzgf@163.com

摘要: 基于构建的裂纹剥离扩展失效过程的模拟方法,提出了预测临界载荷的方法,并通过界面的临界应变能释放率与损伤起始应力,构建了预防界面裂纹剥离扩展失效的等值临界真空压力约束预防控制线和设计准则。结果表明,临界压力载荷受控于界面初始预裂纹长度、复合界面的临界应变能释放率(GIC)和损伤起始应力(T0),与界面初始预裂纹长度呈负关联关系,而与临界应变能释放率与损伤起始应力呈正关联关系;当初始预裂纹长度由11.11 %增至15.55 %时,临界压力载荷(Pc)由87.6 kPa降至为57 kPa,降幅为34.9 %;内衬界面剥离韧性参数(T0,GIC)的坐标点位于等值临界真空压力约束控制线之上,可有效预防内衬界面剥离扩展失效。

Abstract: Based on the simulation method of crack peeling propagation failure process, a prediction method for critical load was proposed, and an equivalent critical vacuum pressure load control line and design criteria for preventing interfacial crack peeling and propagation failure were constructed by means of the critical strain energy release rate and damage initiation stress of the lining interface. The results indicated that the critical pressure load was controlled by the initial pre-crack length, critical strain energy release rate and initial damage stress at the composite interface. It was negatively correlated with the initial pre-crack length, but positively correlated with the critical strain energy release rate (GIC) and the initial damage stress (T0). When the initial pre-crack length increased from 11.11 % to 15.55 %, the critical pressure load (Pc) decreased by 34.9 % from 87.6 kPa to 57 kPa. The coordinate points of interface peeling toughness parameters (T0, GIC) were located above the control line of equivalent critical vacuum pressure load, which could effectively prevent the failure of lining interfacial crack peeling and propagation.