
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2020, Vol. 34 ›› Issue (6): 100-109.DOI: 10.19491/j.issn.1001-9278.2020.06.016
收稿日期:
2020-03-02
出版日期:
2020-06-26
发布日期:
2020-06-26
Run ZHANG, Ping XUE(), Suwei WANG, Ke CHEN
Received:
2020-03-02
Online:
2020-06-26
Published:
2020-06-26
Contact:
Ping XUE
E-mail:xueping@mail.buct.edu.cn
摘要:
介绍了形状记忆聚合物在各领域应用的最新研究进展,从实际应用的角度详细分析了在航空航天、生物医疗、电子器件、智能纺织品及自组装领域的优势和存在的问题,同时探讨了在未来发展过程中亟待解决的关键问题,最后展望了形状记忆聚合物的发展前景。
中图分类号:
张润, 薛平, 王苏炜, 陈轲. 形状记忆聚合物制备与应用研究进展[J]. 中国塑料, 2020, 34(6): 100-109.
Run ZHANG, Ping XUE, Suwei WANG, Ke CHEN. Research Progress in Preparation and Applications of Shape Memory Polymers[J]. China Plastics, 2020, 34(6): 100-109.
1 | CHEN T. Characterization of Shape⁃Memory Polymers by DMA[Z/OL]. [2019⁃03⁃02] ⁃Memory%20Polymers%20by%20DMA.pdf |
2 | SEFFEN K A, PELLEGRINO S. Deployment Dynamics of Tape Springs[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Enginee⁃ring Sciences, 1999, 455(1983): 1 003⁃1 048. |
3 | ZHAO W, LIU L, ZHANG F, et al. ShapeMemory Polymers and Their Composites in Biomedical Applications[J]. Materials Science & Engineering C, 2019, 97: 864⁃883. |
4 | LIU C, QIN H, MATHER P T. Review of Progress in Shape⁃memory Polymers[J]. Journal of Materials Chemistry, 2007, 17(16): 1 543⁃1 558. |
5 | MU T, LIU L, LAN X, et al. Shape Memory Polymers for Composites[J]. Composites Science and Technology, 2018, 160: 169⁃198. |
6 | LENDLEIN A, KELCH S. Shape‐memory Polymers[J]. Angewandte Chemie International Edition, 2002, 41(12): 2 034⁃2 057. |
7 | VERNON L B, VERNON H M. Process of Manufactu⁃ring Articles of Thermoplastic Synthetic Resins: U.S. Patent 2,234,993[P]. 1941⁃03⁃18. |
8 | HAGER M D, BODE S, WEBER C, et al. Shape Memory Polymers: Past, Present and Future Developments[J]. Progress in Polymer Science, 2015, 49: 3⁃33. |
9 | CHANG L C, READ T A. Plastic Deformation and Diffusionless Phase Changes in Metals—The Gold⁃cadmium Beta Phase[J]. JOM, 1951, 3(1): 47⁃52. |
10 | BUEHLER W J, GILFRICH J V, WILEY R C. Effect of Low⁃temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi[J]. Journal of Applied Physics, 1963, 34(5): 1 475⁃1 477. |
11 | COHADES A, MICHAUD V. Shape Memory Alloys in Fibre⁃reinforced Polymer Composites[J]. Advanced Industrial and Engineering Polymer Research, 2018, 1(1): 66⁃81. |
12 | JAROS A, SMOLA A, KASPERCZYK J, et al. Biodegradable Shape Memory Polymers for Medical Purposes[J]. Chemik, 2010, 64(2): 87⁃96. |
13 | SANDSTROM R, WEI Z G, MIYAZAKI S. Review: Shape⁃memory Materials and Hybrid Composites for Smart System[J]. Journal of Materials Science, 1998, 33: 3 743⁃3 762. |
14 | 朱光明. 形状记忆聚合物的发展及应用[J]. 工程塑料应用, 2002(8):64⁃66. |
ZHU G M. Development and Application of Shape Me⁃mory Polymer [J]. Engineering Plastics Application, 2002(8):64⁃66. | |
15 | RAINER W C, REDDING E M, HITOV J J, et al. Heat⁃shrinkable Polyethylene[J]. US Pat, 3144398, 1964. |
16 | PERRONE R J. Heat⁃shrinkable Articles Made from Silicone Rubber⁃Polyethylene Compositions[J]. US Pat, 1967, 3326869. |
17 | ARDITTI S J, AVEDIKIAN S Z, BERNSTEIN B S. Articles with Polymeric Memory and Method of Construc⁃ting Same: U S. Patent 3,563,973[P]. 1971⁃02⁃16. |
18 | MU T. Comprehensive Composite Materials II 6.16 Shape Memory Polymer and Its Composite: Function and Application[J]. Comprehensive Composite Materials II, 2018:454⁃486. |
19 | WEI Z G, SANDSTROM R, MIYAZAKI S. Shape Memory Materials and Hybrid Composites for Smart Systems: Part II Shape⁃Memory Hybrid Composites[J]. Journal of Materials Science, 1998, 33(15): 3763⁃3783. |
20 | NAKAYAMA K. Properties and Application of Shape⁃memory Polymers[J]. Nippon Gomu Kyokaishi(J Soc Rubber Ind, Jpn), 1990, 63(9): 529⁃534. |
21 | XIE F, HUANG L, LIU Y, et al. Synthesis and Characterization of High Temperature Cyanate⁃based Shape Memory Polymers with Functional Polybutadiene/Acrylonitrile[J]. Polymer, 2014, 55(23): 5 873⁃5 879. |
22 | BEHL M, BELLIN I, KELCH S, et al. One‐step Process for Creating Triple Shape Capability of AB Polymer Networks[J]. Advanced Functional Materials, 2009, 19(1): 102⁃108. |
23 | BEHL M, KRATZ K, ZOTZMANN J, et al. Reversible Bidirectional Shape Memory Polymers[J]. Advanced Materials, 2013, 25(32): 4 466⁃4 469. |
24 | 郑 宁, 谢 涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017(11):46⁃55. |
ZHENG N, XIE T. Thermadapt Shape Memory Polymer[J]. Acta Polymerica Sinica, 2017, 11:46⁃55. | |
25 | IM E, THOMSON M, FANG H, et al. Prospects of Large Deployable Reflector Antennas for a New Generation of Geostationary Doppler Weather Radar Satellites[C]//AIAA SPACE 2007 Conference & Exposition. 2007: 9917. |
26 | BEAVERS F, MUNSHI N, LAKE M, et al. Design and Testing of an Elastic Memory Composite Deployment Hinge for Spacecraft[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2002: 1 452. |
27 | HINKLEY D, SIMBURGER E. Conductive Shape Memory Metal Deployment Latch Hinge Deployment Method: U.S. Patent Application 09/886,417[P]. 2002⁃12⁃26. |
28 | HINKLEY D A, SIMBURGER E J. Conductive Shape Memory Metal Deployment Latch Hinge: U S. Patent 6,772,479[P]. 2004⁃08⁃10. |
29 | SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape Morphing of Aircraft Wing: Status and Challenges[J]. Materials & Design, 2010, 31(3): 1 284⁃1 292. |
30 | ELZEY D M, SOFLA A Y N, WADLEY H N G. A Bio⁃inspired High⁃authority Actuator for Shape Morphing Structures[C]//Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics. International Society for Optics and Photonics, 2003, 5053: 92⁃101. |
31 | OEHLER S D, HARTL D J, LOPEZ R, et al. Design Optimization and Uncertainty Analysis of SMA Morphing Structures[J]. Smart Materials and Structures, 2012, 21(9): 094016. |
32 | LOVE M, ZINK P, STROUD R, et al. Demonstration of Morphing Technology Through Ground and Wind Tunnel Tests[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2007: 1 729. |
33 | XIE F, LIU L, GONG X, et al. Effects of Accelerated Aging on Thermal, Mechanical and Shape Memory Properties of Cyanate⁃based Shape Memory Polymer: I Vacuum Ultraviolet Radiation[J]. Polymer Degradation and Stability, 2017, 138: 91⁃97. |
34 | LENG J, XIE F, WU X, et al. Effect of the γ⁃Radiation on the Properties of Epoxy⁃based Shape Memory Polymers[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(10): 1 256⁃1 263. |
35 | DHANASEKARAN R, REDDY S S, KUMAR B G, et al. Shape Memory Materials for Bio⁃medical and Aerospace Applications[J]. Materials Today: Proceedings, 2018, 5(10): 21 427⁃21 435. |
36 | YAKACKI C M, GALL K. Shape⁃memory Polymers for Biomedical Applications[M]//Shape⁃memory Polymers. Springer, Berlin, Heidelberg, 2009: 147⁃175. |
37 | LENDLEIN A, LANGER R. Biodegradable, Elastic Shape⁃memory Polymers for Potential Biomedical Applications[J]. Science, 2002, 296(5573): 1 673⁃1 676. |
38 | HUANG W M, YANG B, LIU N, et al. Water⁃responsive Programmable Shape Memory Polymer Devices[C]//International Conference on Smart Materials and Nanotechnology in Engineering. International Society for Optics and Photonics, 2007, 6423: 64231S. |
39 | JING X, MI H Y, HUANG H X, et al. Shape Memory Thermoplastic Polyurethane (TPU)/Poly (ε⁃caprolactone)(PCL) Blends as Self⁃knotting Sutures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64: 94⁃103. |
40 | GU L, JIANG Y, HU J. Synthesis and Properties of Shape Memory Poly (γ⁃benzyl⁃L⁃glutamate)⁃b⁃poly (propylene glycol)⁃b⁃poly (γ⁃benzyl⁃L⁃glutamate)[J]. Applied Sciences, 2017, 7(12): 1 258. |
41 | WEI H, ZHANG Q, YAO Y, et al. Direct⁃write Fabrication of 4D Active Shape⁃changing Structures Based on a Shape Memory Polymer and Its Nanocomposite[J]. ACS Applied Materials & Interfaces, 2016, 9(1): 876⁃883. |
42 | YAKACKI C M, SHANDAS R, LANNING C, et al. Unconstrained Recovery Characterization of Shape⁃memory Polymer Networks for Cardiovascular Applications[J]. Biomaterials, 2007, 28(14): 2 255⁃2 263. |
43 | KUANG X, CHEN K, DUNN C K, et al. 3D Printing of Highly Stretchable, Shape⁃memory, and Self⁃healing Elastomer toward Novel 4D Printing[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7 381⁃7 388. |
44 | 李春妍, 张风华, 王亚立, 等. 4D打印形状记忆聚合物在生物医疗领域的研究进展[J]. 中国科学:技术科学, 2019(1):13⁃25. |
LI C Y, ZHANG F H, WANG Y L, et al. Research Progress of 4D Printing Shape Memory Polymer in Biomedical Field [J]. SCIENTIA SINICA Technologica, 2019, 1:13⁃25. | |
45 | ZAREK M, MANSOUR N, SHSPIRS S, et al. 4D Printing of Shape Memory‐based Personalized Endoluminal Medical Devices[J]. Macromolecular Rapid Communications, 2017, 38(2): 1600628. |
46 | MORRISON R J, HOLLISTER S J, NIEDNER M F, et al. Mitigation of Tracheobronchomalacia with 3D⁃printed Personalized Medical Devices in Pediatric Patients[J]. Science Translational Medicine, 2015, 7(285):1⁃11. |
47 | 郭潇雅.镌刻时间的4D打印[J].中国医院院长,2016,(9):40⁃41. |
GUO X Y. 4D Printing of Engraved Time [J]. China Hospital CEO, 2016, 9:40⁃41. | |
48 | MIAO S, ZHU W, CASTRO N J, et al. 4D Printing Smart Biomedical Scaffolds with Novel Soybean Oil Epo⁃xidized Acrylate[J]. Scientific Reports, 2016, 6: 27226. |
49 | MIAO S, ZHU W, CASTRO N J, et al. Four⁃dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications[J]. Tissue Engineering Part C: Methods, 2016, 22(10): 952⁃963. |
50 | HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al. Towards 4D Printed Scaffolds for Tissue Engineering: Exploiting 3D Shape Memory Polymers to Deliver Time⁃controlled Stimulus on Cultured Cells[J]. Biofabrication, 2017, 9(3): 031001. |
51 | WARE T, SIMON D, HEARON K, et al. Three‐Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces[J]. Macromolecular Materials and Engineering, 2012, 297(12): 1 193⁃1 202. |
52 | WEEMS A C, SZAFRON J M, EASLEY A D, et al. Shape Memory Polymers with Enhanced Visibility for Magnetic Resonance⁃and X⁃ray Imaging Modalities[J]. Acta Biomaterialia, 2017, 54: 45⁃57. |
53 | LU H, LEI M, ZHAO C, et al. Structural Design of Flexible Au Electrode to Enable Shape Memory Polymer for Electrical Actuation[J]. Smart Materials and Structures, 2015, 24(4): 045015. |
54 | LUO H, MA Y, LIi W, et al. Shape Memory⁃enhanced Water Sensing of Conductive Polymer Composites[J]. Materials Letters, 2015, 161: 189⁃192. |
55 | ZHONG J, MENG J, YANG Z, et al. Shape Memory Fiber Supercapacitors[J]. Nano Energy, 2015, 17: 330⁃338. |
56 | ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices[J]. Advanced Materials, 2016, 28(22): 4 449⁃4 454. |
57 | RODRIGUEZ J N, ZHU C, DUOSS E B, et al. Shape⁃morphing Composites with Designed Micro⁃architectures[J]. Scientific Reports, 2016, 6: 27933. |
58 | PARK J, KIM J K, PARK S A, et al. Biodegradable Polymer Material Based Smart Stent: Wireless Pressure Sensor and 3D Printed Stent[J]. Microelectronic Engineering, 2019, 206: 1⁃5. |
59 | HU J, MENG H, LI G, et al. A Review of Stimuli⁃responsive Polymers for Smart Textile Applications[J]. Smart Materials and Structures, 2012, 21(5): 053001. |
60 | CHAN V Y Y F. Investigating Smart Textiles Based on Shape Memory Materials[J]. Textile Research Journal, 2007, 77(5): 290⁃300. |
61 | STYLIOS G K, CHAN Y Y F, WAN T, et al. Engineering Textile Aesthetics by Shape and Colour Changing Materials[C]//5th AUTEX World Textile Conference, Portoroz, Slovenia. 2005. |
62 | GEFEN A, MEGIDO⁃RAVID M, ITZCHAK Y, et al. Analysis of Muscular Fatigue and Foot Stability during High⁃heeled Gait[J]. Gait & posture, 2002, 15(1): 56⁃63. |
63 | LEIST S K, ZHOU J. Current Status of 4D Printing Technology and the Potential of Light⁃reactive Smart Materials as 4D Printable Materials[J]. Virtual and Physical Prototyping, 2016, 11(4): 249⁃262. |
64 | 陈花玲, 罗 斌, 朱子才, 等. 4D打印:智能材料与结构增材制造技术研究进展[J]. 西安交通大学学报, 2018, 12: 1⁃12. |
CHEN H L, LUO B, ZHU Z C, et al. 4D Printing: Progress in Additive Manufacturing Technology of Smart Materials and Structure [J]. Journal of Xi'an Jiaotong University, 2018, 12:1⁃12. | |
65 | CRESPY D, ROSSI R M. Temperature‐responsive Polymers with LCST in the Physiological Range and Their Applications in Textiles[J]. Polymer International, 2007, 56(12): 1 461⁃1 468. |
66 | XIN B, HAO J. Reversibly Switchable Wettability[J]. Chemical Society Reviews, 2010, 39(2): 769⁃782. |
67 | LITTLE A F, CHRISTIE R M. Textile Applications of Photochromic Dyes. Part 1: Establishment of a Methodology for Evaluation of Photochromic Textiles Using Traditional Colour Measurement Instrumentation[J]. Coloration Technology, 2010, 126(3): 157⁃163. |
68 | LITTLE A F, CHRISTIE R M. Textile Applications of Photochromic Dyes. Part 2: Factors Affecting the Photocoloration of Textiles Screen⁃printed with Commercial Photochromic Dyes[J]. Coloration Technology, 2010, 126(3): 164⁃170. |
69 | LITTLE A F, CHRISTIE R M. Textile Applications of Photochromic Dyes. Part 3: Factors Affecting the Technical Performance of Textiles Screen⁃printed with Commercial Photochromic Dyes[J]. Coloration Technology, 2011, 127(5): 275⁃281. |
70 | LIM K Y, KIM B C, YOON K J. Effect of Structural Characteristic on Physical Properties of Copolyesters from Poly (ethylene terephthalate) Oligomer and Polycaprolactone[J]. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(22): 2 552⁃2 560. |
71 | YUAN C, WANG T, DUNN M L, et al. 3D Printed Active Origami with Complicated Folding Patterns[J]. International Journal of Precision Engineering and Manufacturing⁃Green Technology, 2017, 4(3): 281⁃289. |
72 | GE Q, QI H J, DUNN M L. Active Materials by Four⁃dimension Printing[J]. Applied Physics Letters, 2013, 103(13): 131901. |
73 | GE Q, DUNN C K, QI H J, et al. Active Origami by 4D Printing[J]. Smart Materials and Structures, 2014, 23(9):094007. |
74 | LIU Y, BOYLES J K, GENZER J, et al. Self⁃folding of Polymer Sheets Using Local Light Absorption[J]. Soft Matter, 2012, 8(6): 1 764⁃1 769. |
75 | KALITA H, KARAK N. Hyperbranched Polyurethane/Fe3O4 Nanoparticles Decorated Multiwalled Carbon Nanotube Thermosetting Nanocomposites as Microwave Actuated Shape Memory Materials[J]. Journal of Materials Research, 2013, 28(16): 2 132⁃2 141. |
76 | TIBBITS S. 4D Printing: Multi⁃material Shape Change[J]. Architectural Design, 2014, 84(1): 116⁃121. |
77 | XU W, KWORK K S, GRACIAS D H. Ultrathin Shape Change Smart Materials[J]. Accounts of Chemical Research, 2018, 51(2): 436⁃444. |
78 | LENDLEIN A, JIANG H, JUNGER, Oliver, et al. Light⁃induced Shape⁃memory Polymers[J]. Nature, 2005, 434(7035):879⁃882. |
79 | GUO W, LU C H, ORBACH R, et al. pH‐Stimulated DNA Hydrogels Exhibiting Shape‐Memory Properties[J]. Advanced Materials, 2015, 27(1): 73⁃78. |
80 | TAN Y J, WU J, LI H, et al. Self⁃healing Electronic Materials for a Smart and Sustainable Future[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15 331⁃15 345. |
81 | WU H, XU Z C, WU J B, et al. Research Progress of Field⁃induced Soft Smart Materials[J]. International Journal of Modern Physics B, 2018, 32(18): 1840010. |
82 | BUFFINGTON S L, PAUL J E, ALI M M, et al. Enzymatically Triggered Shape Memory Polymers[J]. Acta Biomaterialia, 2019, 84: 88⁃97. |
83 | ZHANG X, LU Q, YANG C, et al. Multi⁃stimuli Responsive Novel Polyimide Smart Materials Bearing Triarylamine and Naphthalimide Groups[J]. European Polymer Journal, 2019, 112: 291⁃300. |
[1] | 徐博, 朱光明, 祝萌. 航空航天用膨化聚四氟乙烯密封材料研究进展 [J]. 中国塑料, 2013, 27(08): 8-12. |
[2] | 宝冬梅 刘吉平. 聚磷腈材料在航空航天及军工领域的应用研究[J]. 中国塑料, 2012, 26(04): 6-21 . |
[3] | 郑曙光 朱光明 张磊. 磁致形状记忆聚合物的研究进展[J]. 中国塑料, 2012, 26(01): 12-17 . |
[4] | 门倩妮 朱光明 许硕贵. 生物降解性形状记忆聚合物及其在生物医学工程方面的应用[J]. 中国塑料, 2011, 25(04): 17-21 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||