
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (5): 9-17.DOI: 10.19491/j.issn.1001-9278.2025.05.002
收稿日期:
2024-07-28
出版日期:
2025-05-26
发布日期:
2025-05-22
通讯作者:
邵春光(1982—),男,教授,从事高分子加工过程中的物理问题研究,shaochg@zzu.edu.cn基金资助:
AN Jingjing, ZHANG Haoyu, LIU Xianhu, SHAO Chunguang()
Received:
2024-07-28
Online:
2025-05-26
Published:
2025-05-22
Contact:
SHAO Chunguang
E-mail:shaochg@zzu.edu.cn
摘要:
随着经济的迅速发展,温室气体排放和能源消耗等问题变得日益严峻。为了缓解能源危机、推动绿色低碳发展,迫切需要开发高效的节能降温材料。近年来,热塑性聚氨酯弹性体(TPU)作为一种潜在的高性能节能降温材料备受关注。本文从节能降温材料的结构设计出发,综述了TPU基膜材料的节能降温机制、制备方法和应用场景,总结了TPU薄膜在节能降温方面的优势,并对其发展前景进行了展望。
中图分类号:
安静静, 张浩宇, 刘宪虎, 邵春光. 用于节能降温的热塑性聚氨酯基膜材料研究进展[J]. 中国塑料, 2025, 39(5): 9-17.
AN Jingjing, ZHANG Haoyu, LIU Xianhu, SHAO Chunguang. Research progress in thermoplastic polyurethane⁃based film materials for energy saving and cooling[J]. China Plastics, 2025, 39(5): 9-17.
1 | Solouki Bonab V. Polyurethane (PU) nanocomposites; interplay of composition, morphology, and properties[D]. Case Western Reserve University,2019. |
2 | 莫钦.热塑性聚氨酯基纳米复合材料的制备与性能研究[D]. 成都:西华大学,2021. |
3 | Mohammed G A, Mabrouk M, He G Q, et al. Towards sustainable cities: A review of zero energy buildings techniques and global activities in residential buildings[J]. Energies, 2023, 16: 3775. |
4 | Liu Y. Seasonal relationship of peak demand and energy impacts of energy efficiency measures⁃a review of evidence in the electric energy efficiency programmes[J]. Energy Efficiency, 2016, 9(5): 1 015⁃1 035. |
5 | 倪正发, 李雪妮, 郭宇. 透明隔热涂料的作用原理及节能效果评估 [J]. 中国涂料, 2015, 30(01): 15⁃18. |
NI Z F, LI X N, GUO Y. The Principle and energy⁃saving assessment of transparent thermal insulation coatings[J]. China Coatings, 2015, 30(01): 15⁃18. | |
6 | Tarasov V E. Heat transfer in fractal materials[J]. International Journal of Heat and Mass Transfer, 2016, 93: 427⁃430. |
7 | Zhai Y, Ma Y G, David S N, et al. Scalable⁃manufactured randomized glass⁃polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6 329): 7899. |
8 | Liang J, Wu J, Guo J, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality[J]. National Science Review, 2023, 10(1): 11. |
9 | Dorodnyy A, Smajic J, Leuthold J. Mie scattering for photonic devices[J]. Laser & Photonics Reviews, 2023,17(9):1⁃18. |
10 | Mandal J, Fu Y K, Overvig A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6 412): 315⁃318. |
11 | Wang S Q, Wang Y M, Zou Y C, et al. Biologically inspired scalable⁃manufactured dual⁃layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21 888⁃21 897. |
12 | Yuan Q, Zhou T, Li L, et al. Hydrogen bond breaking of TPU upon heating: Understanding from the viewpoints of molecular movements and enthalpy[J]. RSC Advances, 2015, 5(39): 31 153⁃31 165. |
13 | Liu S, Duvigneau J, Vancso G J. Nanocellular polymer foams as promising high performance thermal insulation materials[J]. European Polymer Journal, 2015, 65: 33⁃45. |
14 | Liu Z, Li Y, Zhou G. Insulation performance of foam during the terrestrial and and ascent period[J]. Applied Thermal Engineering, 2018, 145: 364⁃374. |
15 | Maggay I V, Yu M L, Wang D M, et al. Strategy to prepare skin⁃free and macrovoid⁃free polysulfone membranes via the NIPS process [J]. Journal of Membrane Science, 2022, 655: 120597. |
16 | Liu X H, Zhang M T, Hou Y Z, et al. Hierarchically superhydrophobic stereo⁃complex poly (lactic acid) aerogel for daytime radiative cooling[J]. Advanced Functional Materials, 2022, 32(46): 2207414. |
17 | Song Y, Zhan Y, Li Y, et al. Scalable fabrication of super⁃elastic TPU membrane with hierarchical pores for subambient daytime radiative cooling[J]. Solar Energy, 2023, 256: 151⁃157. |
18 | Shan X, Liu L, Wu Y, et al. Aerogel⁃functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science, 2022, 20(9): 2201190. |
19 | Ma B C, Liu M C, Zhu Y Z, et al. Record passive radiative cooling of over 15 ℃ by a micro⁃nanoporous granular composite film[J]. ACS Applied Energy Materials, 2024, 7: 5 064⁃5 070. |
20 | Park C, Park C, Park S, et al. Passive daytime radiative cooling by thermoplastic polyurethane wrapping films with controlled hierarchical porous structures[J]. Chemsuschem, 2022, 15(24): 1. |
21 | Wang L, Yuan H Y, Wang Y, et al. Thermoplastic⁃polyurethane⁃based foams via water⁃assisted thermally induced phase separation for daytime passive radiation cooling[J]. Advanced Engineering Materials, 2024,26(11): 2400983. |
22 | Tan X, Rodrigue D. A review on porous polymeric membrane preparation. Part I:production techniques with polysulfone and poly (vinylidene fluoride)[J]. Polymers, 2019, 11(7): 1160. |
23 | Amritha C, Kurian S, Raguram T, et al. Structural, optical, functional, morphological andcompositional analysis of Ni⁃doped TiO2 nanofibers prepared by electrospinning technique[J]. IOP Conference Series: Materials Science and Engineering, 2019, 577(1): 012073. |
24 | Han X, Liu Z, Zhao L. Preparation of optically functional nanofibres and their optical properties under electrospinning technology[J]. International Journal of Nanotechnology, 2020, 17(26): 308⁃324. |
25 | Matysiak W, Tański T. Analysis of the morphology, structure and optical properties of SiO2 nanowires obtained by the electrospinning method[J]. Materials Today: Proceedings, 2019, 7: 382⁃388. |
26 | Li X, Pattelli L, Ding Z M, et al. A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling[J]. Advanced Functional Materials, 2024, 34(23):1⁃10. |
27 | Dong J W, Feng Y Z, Lin K, et al. A stretchable electromagnetic interference shielding fabric with dual⁃mode passive personal thermal management[J]. Advanced Functional Materials, 2024, 34(13): 1⁃12. |
28 | Gu B, Fan F, Xu Q H, et al. A nano⁃structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high⁃temperature environments[J]. Chemical Engineering Journal, 2023, 461: 141919. |
29 | Cai X, Gao L, Wang J Z, et al. MOF⁃integrated hierarchical composite fiber for efficient daytime radiative cooling and antibacterial protective textiles[J]. ACS Applied Materials & Interfaces, 2023, 15: 8 537⁃8 545. |
30 | Zhao Y C, Fang F. An energy⁃saving composite textile for thermal management[J]. Composites Science and Technology, 2023,237: 110013. |
31 | Prabu G, Dhurai B. A novel profiled multi⁃pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers[J]. Scientific Reports, 2020, 10(1): 4302. |
32 | 邹爽, 赵金松, 陈驰. 静电纺丝技术的影响因素及应用研究综述[J]. 河南科技, 2019, 05: 75⁃77. |
ZOU S, ZHAO J S, CHEN C. Review on the influence factors and application of electrostatic spinning technology[J]. Henan Science and Technology, 2019, 05: 75⁃77. | |
33 | 杨豆, 张卫波, 刘锰钰, 等. 静电纺丝制备纳米纤维的影响因素研究进展[J]. 合成技术及应用,2017, 32(01): 25⁃29. |
YANG D, ZHANG W B, LIU M Y,et al. Research progress on the influence factors of preparing nanofibers by electrospinning [J]. Synthetic Technology & Application,2017, 32(01): 25⁃29. | |
34 | Soong Y C, Chiu C W. Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable⁃cooling smart clothes[J]. Journal of Colloid and Interface Science, 2021, 599: 611⁃619. |
35 | E S F, Geng R J, Zhu Z Z, et al. Large⁃scale fabrication of boron nitride nanotubes and their application in thermoplastic polyurethane based composite for improved thermal conductivity[J]. Ceramics International, 2018, 44(18): 22 794⁃22 799. |
36 | Wang L J, Han D B, Luo J, et al. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites [J]. Journal of Physical Chemistry C, 2018, 122: 1 867⁃1 873 |
37 | Rehman W U, Hassan A A, Ahmed J, et al. Thermoplastic polyurethane conjugated antimony doped tin oxide nanocomposite for enhanced electrical and thermal conductivity[J]. Synthetic Metals, 2020, 269: 116570. |
38 | Wondu E, Lule Z C, Kim J. Fabrication of thermoplastic polyurethane composites with a high dielectric constant and thermal conductivity using a hybrid filler of CNT@BaTiO3 [J]. Materials Today Chemistry, 2023, 27: 101287. |
39 | Zhang Z Y, Liu X D, Zhou Y, et al. Passive⁃cooling mica⁃TiO2/thermoplastic polyurethane films with enhanced gas⁃barrier property[J]. Journal of Applied Polymer Science, 2023,140(27): 54016. |
40 | Chen L F, Zhang K, Ma M Q, et al. Sub⁃ambient radiative cooling and its application in buildings[J]. Building Simulation, 2020, 13: 1 165⁃1 189. |
41 | Lin Y Y, Qin C H, Liang Z X, et al. Biomimetic structurally colored film for high⁃performance radiative cooling[J]. Advanced Optical Materials, 2024, 12(26):1⁃12. |
42 | Kim M, Lee D, Son S, et al. Visibly transparent radiative cooler under direct sunlight[J]. Advanced Optical Materials, 2021, 9(13): 2002226. |
43 | Zhang X N, Qiu J, Li X C, et al. Complex refractive indices measurements of polymers in visible and near⁃infrared bands[J]. Applied Optics, 2020, 59(8): 2 337⁃2 344. |
44 | Zhou Z G, Wang X, Ma Y G, et al. Transparent polymer coatings for energy⁃efficient daytime window cooling[J]. Cell Reports Physical Science, 2020, 1(11): 100231. |
45 | Yuan J, Qian X T, Meng Z C, et al. Highly thermally conducting polymer⁃based films with magnetic field⁃assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces, 2019, 11: 17 915⁃17 924. |
46 | Yu C P, Gong W B, Tian W, et al. Hot⁃pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm-1 K-1 [J]. Composites Science and Technology, 2018, 160: 199⁃207. |
47 | Shen Y H, Wu Z S, Li Y B. Lightweight and thermally conductive thermoplastic polyurethane/hollow glass bead/boron nitride composites with flame retardancy[J]. Ceramics International, 2022, 48: 32 748⁃32 756. |
[1] | 陈茜, 王湘, 姜超, 高达利. 马来酸酐接枝聚丙烯的研究进展及应用[J]. 中国塑料, 2025, 39(3): 102-108. |
[2] | 陈茜 王湘 姜超 高达利. 马来酸酐接枝聚丙烯的研究进展及应用[J]. , 2025, 39(3): 102-108. |
[3] | 郭三刺, 王蕾, 袁洪跃, 杨怡丹, 刘宪虎, 潘亚敏. 辐射制冷材料及其应用研究进展[J]. 中国塑料, 2025, 39(1): 132-140. |
[4] | 高挺, 彭强, 马秀清. 聚碳酸酯增韧改性研究进展[J]. 中国塑料, 2025, 39(1): 37-43. |
[5] | 纪嘉骏, 张增平, 李俊辉, 施恩, 李清旭. 用于公路工程的环氧树脂密封胶的研究与应用进展[J]. 中国塑料, 2025, 39(1): 63-74. |
[6] | 文麒霖, 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁. 生物可降解塑料包装薄膜的制备及应用进展[J]. 中国塑料, 2024, 38(9): 112-122. |
[7] | 崔豹, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚乳酸复合材料共混改性研究及应用进展[J]. 中国塑料, 2024, 38(9): 129-136. |
[8] | 韦深智, 陈娟, 饶杰, 张樱豪, 周敏杰, 张旗. 新型磷⁃氮复合阻燃剂的制备及其在TPU中的应用[J]. 中国塑料, 2024, 38(9): 88-93. |
[9] | 刘顺权, 张馨月, 冯占苗, 傅陈超, 薛平, 张润. PTFE改性技术及其性能优化研究进展[J]. 中国塑料, 2024, 38(7): 112-119. |
[10] | 赵永飞, 张文才, 王科, 郝晓刚, 申峻, 杨喜英, 赵丽荣, 李建红, 赵志新, 乔杰. 废弃聚乙烯改性剂改性沥青研究及其应用技术进展[J]. 中国塑料, 2024, 38(7): 93-99. |
[11] | 雷经发, 胡基波, 刘涛, 吴文奇, 沈朝阳. PVC/TPU共混材料静动态力学性能及本构模型研究[J]. 中国塑料, 2024, 38(5): 1-6. |
[12] | 林高明, 张国辉, 宗胡曾, 王重阳, 贺有凤, 王苏炜. 聚合物基高黏浆料立式螺旋挤注装填装备关键元件结构的仿真优化[J]. 中国塑料, 2024, 38(5): 107-112. |
[13] | 张正, 李方全, 李杰, 李长金, 郭敏, 王颖. 聚酰胺在医用卫生材料中的应用及研究进展[J]. 中国塑料, 2024, 38(5): 113-119. |
[14] | 赵晗旸, 阎格, 阳勇, 纪晓娜, 王鑫, 刘文言. 喷气燃料对热塑性聚氨酯热性能的影响研究[J]. 中国塑料, 2024, 38(5): 33-39. |
[15] | 李双燕, 卢新宇, 苏琼, 赵梦驰, 阿丽旦·如扎洪, 王玉璞, 赵利斌. 环境友好生物质材料改性及发泡方法的研究进展[J]. 中国塑料, 2024, 38(12): 163-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||