中国塑料 ›› 2025, Vol. 39 ›› Issue (9): 7-11.DOI: 10.19491/j.issn.1001-9278.2025.09.002

• 材料与性能 • 上一篇    下一篇

热力耦合作用下PE⁃UHMW的黏弹塑性变形性能初探

牛凯1(), 张润1(), 刘鸣飞1, 傅陈超1, 薛平1, 吴嘉俊2   

  1. 1.北京化工大学机电工程学院,北京 100029
    2.汕头大学工学院,广东 汕头 515063
  • 收稿日期:2024-10-14 出版日期:2025-09-26 发布日期:2025-09-22
  • 通讯作者: 张润(1993—),男,副研究员,从事高分子成型技术与装备研究,zhangrun_buct@163.com
    E-mail:niukai233@163.com;zhangrun_buct@163.com
  • 作者简介:牛凯(2000—),男,硕士研究生在读,niukai233@163.com
  • 基金资助:
    国家自然科学基金青年科学基金(52303022);中央高校基本科研业务费专项资金(ZY2410)

Study on visco⁃elastic⁃plastic deformation of PE⁃UHMW under thermal⁃mechanical coupling

NIU Kai1(), ZHANG Run1(), LIU Mingfei1, FU Chenchao1, XUE Ping1, WU Jiajun2   

  1. 1.College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China
    2.College of Engineering,Shantou University,Shantou 515063,China
  • Received:2024-10-14 Online:2025-09-26 Published:2025-09-22
  • Contact: ZHANG Run E-mail:niukai233@163.com;zhangrun_buct@163.com

摘要:

利用弹性模量、蠕变性能和应力松弛等力学性能测试表征了超高分子量聚乙烯(PE⁃UHMW)的黏弹塑性变形行为,数据拟合得到了不同温度下PE⁃UHMW的拉伸弹性模量、黏性系数和松弛时间等参数,并通过构建黏弹塑性变形物理模型描述了PE⁃UHMW热力耦合作用下的变形过程,结果表明,50~120 ℃内,PE⁃UHMW的拉伸弹性模量、黏性系数和松弛时间随温度升高分别从134.26 MPa、325.61 GPa·s和937.83 s降低至20.96 MPa、224.66 GPa·s和830.29 s;此外,通过并联弹簧模型、开尔文模型和黏壶模型可以描述PE⁃UHMW恒应变下的黏弹塑性变形过程。

关键词: 超高分子量聚乙烯, 黏弹塑性变形, 蠕变应变, 应力松弛

Abstract:

In this study, the visco⁃elastic⁃plastic deformation behavior of ultra⁃high⁃molecular⁃weight polyethylene (PE⁃UHMW) were systematically investigated under thermo⁃mechanical coupling conditions. Through comprehensive mechanical characterization including elastic modulus measurements, creep tests, and stress relaxation analysis, the temperature⁃dependent evolutions of key parameters, including tensile modulus, viscosity coefficient, and relaxation time, were quantified. Experimental results indicated a significant thermo⁃sensitive behavior, with the tensile modulus decreasing from 134.26 to 20.96 MPa, viscosity coefficient from 325.61 to 224.66 GPa·s, and relaxation time from 937.83 to 830.29 s as temperature increased from 50 to 120 °C. A novel parallel physical model combining spring, Kelvin, and viscous pot elements was developed to accurately describe the deformation mechanisms under constant strain conditions. This model provides fundamental insights into the complex visco⁃elastic⁃plastic behavior of PE⁃UHMW, establishing quantitative relationships between thermal conditions and mechanical response.

Key words: ultra?high?molecular?weight polyethylene, visco?elastic?plastic deformation, creep strain, stress relaxation

中图分类号: