中国塑料 ›› 2025, Vol. 39 ›› Issue (9): 81-85.DOI: 10.19491/j.issn.1001-9278.2025.09.013

• 加工与应用 • 上一篇    下一篇

TPU气辅3D打印中高温高压气流对制品性能的影响

刘英兰1(), 肖建华2(), 高延峰1(), 胥世康2   

  1. 1.上海工程技术大学机械与汽车工程学院,上海 201620
    2.上海工程技术大学化学化工学院,上海 201620
  • 收稿日期:2024-10-15 出版日期:2025-09-26 发布日期:2025-09-22
  • 通讯作者: 肖建华,教授,主要从事精密挤出成型研究,04200010@sues.edu.cn
    高延峰,教授,主要从事材料成型加工研究,gyf_2672@163.com
    E-mail:liuyinglan2022@163.com;04200010@sues.edu.cn;gyf_2672@163.com
  • 作者简介:刘英兰,硕士研究生,liuyinglan2022@163.com
  • 基金资助:
    国家自然科学基金项目(52063021)

Effects of high⁃temperature and high⁃pressure airflows on product performance in gas⁃assisted 3D printing of TPU

LIU Yinglan1(), XIAO Jianhua2(), GAO Yanfeng1(), XU Shikang2   

  1. 1.School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    2.School of Chemistry and Chemical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2024-10-15 Online:2025-09-26 Published:2025-09-22
  • Contact: XIAO Jianhua, GAO Yanfeng E-mail:liuyinglan2022@163.com;04200010@sues.edu.cn;gyf_2672@163.com

摘要:

为提高3D打印制品的层间结合强度,提出一种高温高压气体辅助3D打印方法。研究了高温高压气体辅助3D打印条件下,聚氨酯3D打印离模后温度场、拉伸强度、断面形貌、制品表面官能团等物理、力学性能。结果表明,高温高压气体辅助3D打印条件下,TPU丝材离模后温度场高且均衡,有利于层间热黏合,断面孔隙率低,制品拉伸强度提升96 %。且空气中的高温高压氧气未与制品表面发生化学作用,未发生热氧化作用。研究结果为提升高分子3D打印制品力学性能提供了一种新途径。

关键词: 气体辅助, 温度场, 层间结合, 力学强度

Abstract:

In this study, a novel high⁃temperature, high⁃pressure gas⁃assisted 3D printing method was proposed to enhance interlayer bonding strength in polymer additive manufacturing. Using thermoplastic polyurethane (TPU) as a model material, the effects of this approach on the temperature field distribution, tensile strength, cross⁃sectional morphology, and surface chemistry of printed parts were systematically investigated. Experimental results indicated that the gas⁃assisted process achieved a uniform, elevated temperature field in TPU filaments, promoting effective interlayer fusion while maintaining low porosity (≤2 %). This optimization leads to a 96 % improvement in tensile strength compared to conventional 3D printing methods. Furthermore, surface characterization confirmed that high⁃temperature oxygen exposure did not induce thermal oxidation or chemical degradation of the printed material. These findings established an effective strategy for significantly improving the mechanical performance of polymer 3D⁃printed components without compromising material integrity.

Key words: gas?assisted, inter?layer bonding, temperature field, mechanical strength

中图分类号: