
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (8): 44-54.DOI: 10.19491/j.issn.1001-9278.2021.08.007
孙小东1, 曹鼎1, 胡倩倩1, 姚文清2, 李景虹2, 冯拥军1()
收稿日期:
2021-08-09
出版日期:
2021-08-26
发布日期:
2021-08-27
基金资助:
SUN Xiaodong1, CAO Ding1, HU Qianqian1, YAO Wenqing2, LI Jinghong2, FENG Yongjun1()
Received:
2021-08-09
Online:
2021-08-26
Published:
2021-08-27
Contact:
FENG Yongjun
E-mail:yjfeng@mail.buct.edu.cn
摘要:
塑料对人类社会进步和经济发展发挥着重要作用的同时, 塑料的大规模生产和使用不可避免地产生大量的废旧塑料,无疑对地表水、土壤和海洋等带来严重的污染。塑料污染已成为全球可持续发展的挑战。传统物理回收法难以满足环保和资源化的要求,发展高效化学回收资源利用势在必行。文章针对8种典型量大面广的塑料如对苯二甲酸乙二醇酯(PET)、聚烯烃[含聚乙烯(PE)和聚丙烯(PP)]、聚氯乙烯(PVC)、聚氨酯(PU)等,梳理了当前国内外废弃塑料的化学回收资源化利用研究进展,特别是近10年内的新技术,对废弃塑料化学回收再利用技术的开发有一定的参考借鉴意义。
中图分类号:
孙小东, 曹鼎, 胡倩倩, 姚文清, 李景虹, 冯拥军. 废弃塑料的化学回收资源化利用研究进展[J]. 中国塑料, 2021, 35(8): 44-54.
SUN Xiaodong, CAO Ding, HU Qianqian, YAO Wenqing, LI Jinghong, FENG Yongjun. Progress in Chemical Recovery and Resource Utilization of Waste Plastics[J]. China Plastics, 2021, 35(8): 44-54.
塑料种类 | 2020年产量/kt | 资源化利用的方法 | 应用 |
---|---|---|---|
PET | 78 200 | 醇解法、水解法、氨解/胺解法 | 纤维、薄膜、纺织品、工程塑料、包装 |
PP | 25 815.9 | 化学氧化、催化氢解、催化热解、超临界水液化催化成油 | 汽车零部件、家电制品、玩具及化工管道 |
PE | 17 790 | 薄膜、容器、管道、单丝、电线电缆、日用品 | |
PVC | 20 000 | 锡酸锌阻燃剂、磁性粒子浮选、离子液体催化氢解、电化学类电芬顿技术 | 医药、化工防腐材料、包装材料、人造革、塑料制品等软制品和 异型材、管材、板材等硬制品 |
PU | 18 000 | 催化降聚、催化氢解 | 鞋类、交通、建筑、机械、体育、电气和电子、海洋 |
PS | 2 433.8 | 溶液浇铸法、生物降解 | 家电、电子、汽车及玩具 |
PC | 1 130 | 解聚、亚/超临界水液化成油技术 | 飞机、汽车、电子、建筑、医疗 |
PA | 16 | 水热液化成油、微波辅助解聚 | 电子电器、汽车工业 |
塑料种类 | 2020年产量/kt | 资源化利用的方法 | 应用 |
---|---|---|---|
PET | 78 200 | 醇解法、水解法、氨解/胺解法 | 纤维、薄膜、纺织品、工程塑料、包装 |
PP | 25 815.9 | 化学氧化、催化氢解、催化热解、超临界水液化催化成油 | 汽车零部件、家电制品、玩具及化工管道 |
PE | 17 790 | 薄膜、容器、管道、单丝、电线电缆、日用品 | |
PVC | 20 000 | 锡酸锌阻燃剂、磁性粒子浮选、离子液体催化氢解、电化学类电芬顿技术 | 医药、化工防腐材料、包装材料、人造革、塑料制品等软制品和 异型材、管材、板材等硬制品 |
PU | 18 000 | 催化降聚、催化氢解 | 鞋类、交通、建筑、机械、体育、电气和电子、海洋 |
PS | 2 433.8 | 溶液浇铸法、生物降解 | 家电、电子、汽车及玩具 |
PC | 1 130 | 解聚、亚/超临界水液化成油技术 | 飞机、汽车、电子、建筑、医疗 |
PA | 16 | 水热液化成油、微波辅助解聚 | 电子电器、汽车工业 |
1 | 何 露, 沈佳斌, 郭少云. 废旧塑料改性再生的研究进展 [J]. 高分子通报, 2021(2): 18⁃28. |
HE L,SHEN J B,GUO S Y. Research Progress in Modification of Waste Plastics[J].Polymer Bulletin , 2021(2): 18⁃28. | |
2 | 马长德. 基于废旧聚合物的碳纳米材料制备及其在储能和吸波中的应用[D].合肥:中国科学技术大学, 2020. |
3 | 吕苗苗. 基于大数据分析的废旧塑料利用率算法[J]. 合成树脂及塑料, 2021, 38(1): 69⁃72. |
LYU M M. Utilization Rate Algorithm of Waste Plastics Based on Big Data Analysis[J]. China Synthetic Resin and Plastics, 2021, 38(1): 69⁃72. | |
4 | RAGAERT K, DELVA L,GEEM K V. Mechanical and Chemical Recycling of Solid Plastic Waste[J]. Waste Management, 2017, 69: 24⁃58. |
5 | WILLIAMS P T. Hydrogen and Carbon Nanotubes from Pyrolysis⁃catalysis of Waste Plastics: A Review[J]. Waste and Biomass Valorization, 2020, 12(1): 1⁃28. |
6 | KIL P J,OOK K M. Mechanical Properties of Cement⁃based Materials with Recycled Plastic: A Review[J]. Sustainability, 2020, 12(21): 1⁃21. |
7 | ELLIS L D, RORRER N A, SULLIVAN K P, et al. Chemical and Biological Catalysis for Plastics Recycling and Upcycling[J]. Nature Catalysis, 2021, 4(7): 539⁃556. |
8 | WORCH J C,DOVE A P. 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics[J]. ACS Macro Letters, 2020, 9(11): 1 494⁃1 506. |
9 | TAN Z, FEI Z, ZHAO B, et al. Identification for Recycling Polyethylene Terephthalate (PET) Plastic Bottles by Polarization Vision[J]. IEEE Access, 2021(9): 27 510⁃27 517. |
10 | 黄逸伦, 张师军, 吴长江. 废旧PET回收循环利用方法的研究进展[J]. 现代塑料加工应用, 2021, 33(3): 52⁃55. |
HUANG Y L,ZHANG S J,WU C J. Research Progress on Recycling Methods of Waste PET[J]. Modern Plastics Processing and Applications, 2021, 33(3): 52⁃55. | |
11 | 邢玉静, 严玉蓉, 吴松平,等. PET解聚方法研究进展 [J]. 合成纤维工业, 2020, 43(5): 48⁃55. |
XING Y J,YAN Y R,WU S P,et al. Research Progress in Depolymerization of PET [J].China Synthetic Fiber Industry, 2020, 43(5): 48⁃55. | |
12 | TEXTOR T, DERKSEN L,GUTMANN J S. Employing Ionic Liquids to Deposit Cellulose on PET Fibers[J]. Carbohydrate Polymers, 2016, 146: 139⁃147. |
13 | 石开宇, 郭立颖, 王逸蓉,等. PET降解方法及离子液体催化剂的研究进展[J]. 塑料, 2019, 48(3): 42⁃45. |
SHI K Y,GUO L Y, WANG Y R,et al. Advances in PET Degradation Methods and Ionic Liquid Catalysts[J].Plastics, 2019, 48(3): 42⁃45. | |
14 | PUSPITASARI N, TSAI S L,LEE C K. Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethy⁃lene Terephthalate[J]. Applied Biochemistry and Biotechnology, 2021, 193(5): 1 284⁃1 295. |
15 | TOURNIER V, TOPHAM C M, GILLES A, et al. An Engineered PET Depolymerase to Break Down and Recycle Plastic Bottles[J]. Nature, 2020, 580(7 802): 216⁃219. |
16 | CHEN K, HU Y, DONG X, et al. Molecular Insights into the Enhanced Performance of EKylated PETase Toward PET Degradation[J]. ACS Catalysis, 2021, 11(12): 7 358⁃7 370. |
17 | MERKEL D R, KUANG W, MALHOTRA D, et al. Waste PET Chemical Processing to Terephthalic Amides and Their Effect on Asphalt Performance[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 5 615⁃5 625. |
18 | FLURY M and NARAYAN R. Biodegradable Plastic as an Integral Part of the Solution to Plastic Waste Pollution of the Environment[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 30: 100490. |
19 | 李 湘, 徐 娟, 殷 洁,等. 竹炭的改性及对PP废塑料性能影响的研究 [J]. 塑料工业, 2021, 49(1): 89⁃92. |
LI X, XU J, YIN J,et al. Study on the Modification of Bamboo Charcoal and Its Influence on PP Waste Plastics [J]. China Plastics Industry, 2021, 49(1): 89⁃92. | |
20 | NILSSON F, KARLSSON M, GEDDE U W, et al. Nanocomposites and Polyethylene Blends: Two Potentially Synergistic Strategies for HVDC Insulation Materials with Ultra⁃low Electrical Conductivity[J]. Composites Part B: Engineering, 2021, 204: 108498. |
21 | ZANCHIN G and LEONE G. Polyolefin Thermoplastic Elastomers from Polymerization Catalysis: Advantages, Pitfalls and Future Challenges[J]. Progress in Polymer Science, 2021, 113: 101342. |
22 | ELLIS L D, ORSKI S V, KENLAW G A, et al. Tandem Heterogeneous Catalysis for Polyethylene Depolymeri⁃zation via an Olefin⁃intermediate Process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 623⁃628. |
23 | GANGURDE L S, STURM G S J, VALERO⁃ROMERO M J, et al. Synthesis, Characterization, and Application of Ruthenium⁃doped SrTiO3 Perovskite Catalysts for Microwave⁃assisted Methane dry Reforming[J]. Chemical Engineering and Processing⁃Process Intensification, 2018, 127: 178⁃190. |
24 | CELIK G, KENNEDY R M, HACKLER R A, et al. Upcycling Single⁃use Polyethylene into High⁃quality Liquid Products[J]. ACS Central Science, 2019, 5(11): 1 795⁃1 803. |
25 | HOLMBERG K, ANDERSSON P,ERDEMIR A. Global Energy Consumption Due to Friction in Passenger Cars[J]. Tribology International, 2012, 47: 221⁃234. |
26 | HOLMBERG K,ERDEMIR A. Influence of Tribology on Global Energy Consumption, Costs and Emissions[J]. Friction, 2017, 5(3): 263⁃284. |
27 | KOTS P A, LIU S, VANCE B C, et al. Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts[J]. ACS Catalysis, 2021, 11(13): 8 104⁃8 115. |
28 | BURANGE A S, GAWANDE M B, LAM F L Y, et al. Heterogeneously Catalyzed Strategies for the Deconstruction of High Density Polyethylene: Plastic Waste Valorisation to Fuels[J]. Green Chemistry, 2015, 17(1): 146⁃156. |
29 | ESCHENBACHER A, GOODARZI F, SARAEIAN A, et al. Performance of Mesoporous HZSM⁃5 and Silicalite⁃1 coated Mesoporous HZSM⁃5 catalysts for Deoxygenation of Straw Fast Pyrolysis Vapors[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104712. |
30 | NIZAMUDDIN S, BALOCH H A, MUBARAK N M, et al. Solvothermal Liquefaction of Corn Stalk: Physico⁃chemical Properties of Bio⁃oil and Biochar[J]. Waste and Biomass Valorization, 2018, 10(7): 1 957⁃1 968. |
31 | ALIPOUR MOGHADAM ESFAHANI R, OSMIERI L, SPECCHIA S, et al. H2⁃rich Syngas Production Through Mixed Residual Biomass and HDPE Waste via Integrated Catalytic Gasification and Tar Cracking Plus Bio⁃char Upgrading[J]. Chemical Engineering Journal, 2017, 308: 578⁃587. |
32 | DIAZ⁃SILVARREY L S, ZHANG K,PHAN A N. Monomer Recovery Through Advanced Pyrolysis of Waste High Density Polyethylene (HDPE)[J]. Green Chemistry, 2018, 20(8): 1 813⁃1 823. |
33 | AL⁃SALEM S M and LETTIERI P. Kinetic Study of High Density Polyethylene (HDPE) Pyrolysis[J]. Chemi⁃cal Engineering Research and Design, 2010, 88(12): 1 599⁃1 606. |
34 | SEIFZADEH HAGHIGHI S, RAHIMPOUR M R, RAEISSI S, et al. Investigation of Ethylene Production in Naphtha Thermal Cracking Plant in Presence of Steam and Carbon Dioxide[J]. Chemical Engineering Journal, 2013, 228: 1 158⁃1 167. |
35 | LYALIN A, GAO M,TAKETSUGU T. When Inert Becomes Active: A Fascinating Route for Catalyst Design[J]. Chemical Record, 2016, 16(5): 2 324⁃2 337. |
36 | CHEN W⁃T, JIN K, LINDA WANG N⁃H. Use of Supercritical Water for the Liquefaction of Polypropylene into Oil[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3 749⁃3 758. |
37 | MIANDAD R, NIZAMI A S, REHAN M, et al. Influence of Temperature and Reaction Time on the Conversion of Polystyrene Waste to Pyrolysis Liquid Oil[J]. Waste Management, 2016, 58: 250⁃259. |
38 | NABAVI⁃PELESARAEI A,BAYAT R, HOSSEINZADEH⁃BANDBAFHA H, et al. Modeling of Energy Consumption and Environmental Life Cycle Assessment for Incineration and Landfill Systems of Municipal Solid Waste Management—A Case Study in Tehran Metropolis of Iran[J]. Journal of Cleaner Production, 2017, 148: 427⁃440. |
39 | 高中峰. PVC改性和加工应用工艺研究进展[J]. 工程塑料应用, 2020, 48(6): 150⁃153. |
GAO Z F. Research Progress on Modification and Processing Application of PVC Resin[J]. Engineering Plastics Application, 2020, 48(6): 150⁃153. | |
40 | BOYLE D, CATARINO A I, CLARK N J, et al. Polyvinyl Chloride (PVC) Plastic Fragments Release Pb Additives that Are Bioavailable in Zebrafish[J]. Environmental Pollution, 2020, 263(Part A): 114422. |
41 | SOPHONRAT N, SANDSTR M L, A⁃CJOHANSSON, et al. Co⁃pyrolysis of Mixed Plastics and Cellulose: An Interaction Study by Py⁃GC×GC/MS[J]. Energy & Fuels, 2017, 31(10): 11 078⁃11 090. |
42 | 施珣若. PVC塑料助剂的现状和展望[J]. 橡塑技术与装备, 2016, 42(18): 10⁃16. |
SHI X R.Present Situation and Prospect of PVC Plastic Additives[J].China Rubber/Plastics Technology and Equipment, 2016, 42(18): 10⁃16. | |
43 | LI D, LEI S, RAJPUT G, et al. Study on the Co⁃pyrolysis of Waste Tires and Plastics[J]. Energy, 2021, 226: 120381. |
44 | 陈灵智, 杨佳辉, 吴瑞红,等. 模板合成AC⁃Zn2SnO4对PVC热降解性能影响 [J]. 现代塑料加工应用, 2021, 33(1): 14⁃18. |
CHEN L Z, YANG J H, WU R H,et al. Effect of AC⁃Zn2SnO4 Synthesized by Template on Thermal Degradation of PVC [J]. Modern Plastics Processing and Applications, 2021, 33(1): 14⁃18. | |
45 | WANG J, YUE D,WANG H. In Situ Fe3O4 Nanoparticles Coating of Polymers for Separating Hazardous PVC from Microplastic Mixtures[J]. Chemical Engineering Journal, 2021, 407: 127170. |
46 | OSTER K, TEDSTONE A, GREER A J, et al. Dehydrochlorination of PVC in Multi⁃layered Blisterpacks Using Ionic Liquids[J]. Green Chemistry, 2020, 22(15): 5 132⁃5 142. |
47 | MIAO F, LIU Y, GAO M, et al. Degradation of Polyvinyl Chloride Microplastics via an Electro⁃Fenton⁃like System with a TiO2/Graphite Cathode[J]. Journal of Hazardous Materials, 2020, 399: 123023. |
48 | BERGAMONTI L, TAURINO R, CATTANI L, et al. Lightweight Hybrid Organic⁃inorganic Geopolymers Obtained Using Polyurethane Waste[J]. Construction and Building Materials, 2018, 185: 285⁃292. |
49 | XIE F, ZHANG T, BRYANT P, et al. Degradation and Stabilization of Polyurethane Elastomers[J]. Progress in Polymer Science, 2019, 90: 211⁃268. |
50 | KANCHANAPIYA P, INTARANON N and TANTISATTAYAKUL T. Assessment of the Economic Recycling Potential of a Glycolysis Treatment of Rigid Polyurethane Foam Waste: A Case Study from Thailand[J]. Journal of Environmental Management, 2021, 280: 111638. |
51 | WANG Y, SONG H, GE H, et al. Controllable Degradation of Polyurethane Elastomer via Selective Cleavage of CO and CN Bonds[J]. Journal of Cleaner Production, 2018, 176: 873⁃879. |
52 | ZHOU W, NEUMANN P, BATAL MAL, et al. Depolymerization of Technical⁃grade Polyamide 66 and Polyurethane Materials Through Hydrogenation[J]. ChemSusChem, 2020, 13: 1⁃6. |
53 | 李 湘, 区辉彬, 郑文涛. 利用不同的PS废塑料制备环保阻燃PS[J]. 塑料工业, 2019, 47(1): 136⁃139. |
LI X, OU H B, ZHENG W T. Preparation of Environmental⁃friendly Flame Retardant PS by Using Different PS Waste Plastics[J]. China Plastics Industry, 2019, 47(1): 136⁃139. | |
54 | AHMAD N, AHMAD N, MAAFA I M, et al. Thermal Conversion of Polystyrene Plastic Waste to Liquid Fuel via Ethanolysis[J]. Fuel, 2020, 279: 118498. |
55 | ZHUANG G⁃L, TSENG H⁃H and WEY M⁃Y. Feasibility of Using Waste Polystyrene as a Membrane Material for Gas Separation[J]. Chemical Engineering Research and Design, 2016, 111: 204⁃217. |
56 | MARIA H J, THOMAS M G, MORREALE M, et al. Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/organoclay) Blend Nanocompo⁃sites[J]. Materials, 2020, 13(11): 2654. |
57 | KIM H⁃W, JO J H, KIM Y⁃B, et al. Biodegradation of Polystyrene by Bacteria from the Soil in Common Environments[J]. Journal of Hazardous Materials, 2021, 416: 126239. |
58 | 王 萌, 杜拴丽, 李迎春,等. 浮选法分离废旧ABS和PS⁃HI中pH值的影响 [J]. 工程塑料应用, 2015, 43(1): 48⁃52. |
WANG M,DU S L, LI Y C,et al. Effect of pH on Separation of Waste ABS and PS⁃HI by Flotation[J]. Engineering Plastics Application, 2015, 43(1): 48⁃52. | |
59 | WILLIAMSON J B, LEWIS S E, JOHNSON R R, 3rd, et al. C⁃H Functionalization of Commodity Polymers[J]. Angewandte Chemie International Edition, 2019, 58(26): 8 654⁃8 668. |
60 | BAI B, LIU Y, MENG X, et al. Experimental Investigation on Gasification Characteristics of Polycarbonate (PC) Microplastics in Supercritical Water[J]. Journal of the Energy Institute, 2020, 93(2): 624⁃633. |
61 | 王伟华, 宋哲铭, 韩志伟,等. 聚碳酸酯/丙烯腈⁃丁二烯⁃苯乙烯复合材料的力学性能敏感度[J]. 功能材料, 2020, 51(2): 2 160⁃2 164. |
WANG W H,SONG Z M,HAN Z W,et al. Mechanical Properties Sensitivity of Polycarbonate/Acrylonitrile⁃butadiene⁃styrene Composites[J]. Journal of Functional Materials, 2020, 51(2): 2 160⁃2 164. | |
62 | NEDJALKOV I, YOSHIIE R, UEKI Y, et al. Tar and Soot Generation Behaviors from ABS, PC and PE Pyrolysis[J]. Journal of Material Cycles and Waste Management, 2016, 19(2): 682⁃693. |
63 | SAITO K, JEHANNO C, MEABE L, et al. From Plastic Waste to Polymer Electrolytes for Batteries Through Chemical Upcycling of Polycarbonate[J]. Journal of Materials Chemistry A, 2020, 8(28): 13 921⁃13 926. |
64 | SHAO S W, CHEN C H, CHAN J R, et al. Full Atom⁃efficiency Transformation of Wasted Polycarbonates into Epoxy Thermosets and the Catalyst⁃free Degradation of the Thermosets for Environmental Sustainability[J]. Green Chemistry, 2020, 22(14): 4 683⁃4 696. |
65 | WANG L, HAN F, LI G, et al. Direct Synthesis of a High⁃density Aviation Fuel Using a Polycarbonate[J]. Green Chemistry, 2021, 23(2): 912⁃919. |
66 | QUARANTA E, SGHERZA D,TARTARO G. Depolymerization of Poly(bisphenol A Carbonate) under Mild Conditions by Solvent⁃free Alcoholysis Catalyzed by 1,8⁃diazabicyclo[5.4.0]undec⁃7⁃ene as a Recyclable Organocatalyst: A Route to Chemical Recycling of Waste Polycarbonate[J]. Green Chemistry, 2017, 19(22): 5 422⁃5 434. |
67 | JEHANNO C, DEMARTEAU J, MANTIONE D, et al. Synthesis of Functionalized Cyclic Carbonates Through Commodity Polymer Upcycling[J]. ACS Macro Letters, 2020, 9(4): 443⁃447. |
68 | DZIENIA A, MAKSYM P, HACHUŁA B, et al. Studying the Catalytic Activity of DBU and TBD upon Water⁃initiated ROP of ε⁃Caprolactone under Different Thermodynamic Conditions[J]. Polymer Chemistry, 2019, 10(44): 6 047⁃6 061. |
69 | 郭 娇.[Bmim]Cl·FeCl3与DBU基离子液体催化聚酯类材料化学解聚研究[D]. 青岛:青岛科技大学, 2019. |
70 | J⁃HYIM, S⁃JHA,LIM J S. Measurement and Correlation of CO2 Solubility in 1⁃butyl⁃3⁃methylimidazolium ([BMIM]) Cation⁃based Ionic Liquids: [BMIM][Ac], [BMIM][Cl], [BMIM][MeSO4][J]. The Journal of Supercritical Fluids, 2018, 138: 73⁃81. |
71 | SONG X, HU W, HUANG W, et al. Methanolysis of Polycarbonate into Valuable Product Bisphenol A Using Choline Chloride⁃based Deep Eutectic Solvents as Highly Active Catalysts[J]. Chemical Engineering Journal, 2020, 388: 124324. |
72 | WANG B, HUANG Y,ZHANG J. Hydrothermal Liquefaction of Lignite, Wheat Straw and Plastic Waste in Sub⁃Critical Water for Oil: Product Distribution[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 382⁃389. |
73 | PALOMINO A, GODOY⁃SILVA R D, RAIKOVA S, et al. The Storage Stability of Biocrude Obtained by the Hydrothermal Liquefaction of Microalgae[J]. Renewable Energy, 2020, 145: 1 720⁃1 729. |
74 | SESHASAYEE M S,SAVAGE P E. Synergistic Interactions During Hydrothermal Liquefaction of Plastics and Biomolecules[J]. Chemical Engineering Journal, 2021, 417: 129268. |
75 | HELMER PEDERSEN T,CONTI F. Improving the Circular Economy via Hydrothermal Processing of High⁃density Waste Plastics[J]. Waste Management, 2017, 68: 24⁃31. |
76 | ZHAO X, ZHAN L, XIE B, et al. Products Derived from Waste Plastics (PC, HIPS, ABS, PP and PA6) via Hydrothermal Treatment: Characterization and Potential Applications[J]. Chemosphere, 2018, 207: 742⁃752. |
77 | KRUSE A,DAHMEN N. Water—A magic Solvent for Biomass Conversion[J]. The Journal of Supercritical Fluids, 2015, 96: 36⁃45. |
78 | BAI B, LIU Y, WANG Q, et al. Experimental Investigation on Gasification Characteristics of Plastic Wastes in Supercritical Water[J]. Renewable Energy, 2019, 135: 32⁃40. |
79 | CHEN Y, HE Y, JIN H, et al. Resource Utilization of Landfill Leachate Gasification in Supercritical Water[J]. Chemical Engineering Journal, 2020, 386: 124017. |
80 | WU Z, REN Y, OU G, et al. Influence of Special Water Properties Variation on the Heat Transfer of Supercritical Water Flow Around a Sphere[J]. Chemical Engineering Science, 2020, 222: 115698. |
81 | JIN H, BAI B, WEI W, et al. Hydrothermal Liquefaction of Polycarbonate (PC) Plastics in Sub⁃/Supercritical Water and Reaction Pathway Exploration[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 7 039⁃7 050. |
82 | HAIDER S, KAUSAR A,MUHAMMAD B. Research Advancement in High⁃Performance Polyamides and Polyamide Blends Loaded with Layered Silicate[J]. Polymer⁃Plastics Technology and Engineering, 2016, 55(14): 1 536⁃1 556. |
83 | SDOS PASSOS J, GLASIUS M,BILLER P. Screening of Common Synthetic Polymers for Depolymerization by Subcritical Hydrothermal Liquefaction[J]. Process Safety and Environmental Protection, 2020, 139: 371⁃379. |
84 | KAMIMURA A, SHIRAMATSU Y,KAWAMOTO T. Depolymerization of Polyamide 6 in Hydrophilic Ionic Liquids[J]. Green Energy & Environment, 2019, 4(2): 166⁃170. |
[1] | 周迎鑫, 翁云宣, 张彩丽, 刁晓倩, 宋鑫宇. 聚对苯二甲酸乙二醇酯回收技术和标准现状[J]. 中国塑料, 2021, 35(8): 162-171. |
[2] | 李明丰, 蔡志强, 邹亮, 魏晓丽, 习远兵, 王国清, 蔡立乐, 张哲民, 夏国富, 蒋海滨. 中国石化废旧塑料化学回收与化学循环技术探索[J]. 中国塑料, 2021, 35(8): 64-76. |
[3] | 蔡毅, 田晖, 谢淼雪. 废旧家用电器塑料资源化利用及发展趋势[J]. 中国塑料, 2021, 35(8): 77-83. |
[4] | 周宏伟;李立峰;林武;安瑛;杨卫民. 固体废弃塑料挤注压一体化设备的研发[J]. 中国塑料, 2016, 30(03): 105-108 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||