
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (12): 91-100.DOI: 10.19491/j.issn.1001-9278.2023.12.014
刘宝莹1,2(), 杨晨光1,3, 李广1,2, 朱亦翔1,2, 贺永森2,3, 李清政1,2, 翟华1,3(
)
收稿日期:
2023-06-29
出版日期:
2023-12-26
发布日期:
2023-12-26
通讯作者:
翟华(1973—),男,教授, jxzhaihuajx@hfut.edu.cn作者简介:
刘宝莹(1984—),男,高级工程师,dongshizhang@lauffervision.com
基金资助:
LIU Baoying1,2(), YANG Chenguang1,3, LI Guang1,2, ZHU Yixiang1,2, HE Yongsen2,3, LI Qingzheng1,2, ZHAI Hua1,3(
)
Received:
2023-06-29
Online:
2023-12-26
Published:
2023-12-26
Contact:
ZHAI Hua
E-mail:dongshizhang@lauffervision.com;jxzhaihuajx@hfut.edu.cn
摘要:
综述了红外光谱分析技术在废旧汽车塑料分选领域的工作原理和主要应用进展,可以为今后废旧汽车塑料分选技术的研发和设备的推广提供一定参考。
中图分类号:
刘宝莹, 杨晨光, 李广, 朱亦翔, 贺永森, 李清政, 翟华. 红外光谱分选废旧汽车塑料技术研究[J]. 中国塑料, 2023, 37(12): 91-100.
LIU Baoying, YANG Chenguang, LI Guang, ZHU Yixiang, HE Yongsen, LI Qingzheng, ZHAI Hua. Study on sorting technology of automobile waste plastics through infrared spectroscopy recognition[J]. China Plastics, 2023, 37(12): 91-100.
参考文献 | 方法 | 目标 | 准确率/% |
---|---|---|---|
张宇波等[33] | 比对分类后红外光谱的吸收峰峰强和峰数 | 塑料与泥土 | 89.000 |
李文环等[ | PCA和 BP 神经网络 | ABS、PP、PE、PET、PS、PVC、PC | 98.571 |
田静等[34] | PCA 结合 SIM⁃CA、K ⁃近邻、贝叶斯判别 | PP、PE | 100.000 |
马枭等[ | 利用样本之间的余弦相似度 | 35种塑料 | 97.100 |
文生平等[35] | 基于 KNN、LightGBM 和神经网络 | ABS、高密度聚乙烯(PE⁃HD)、低密度聚乙烯(PE⁃LD)、PET、PP、PS、PU、PVC | 91.000 |
张文杰等[ | 1D CNN和MSC⁃SVM | PP新生料、PP再生料、PE新生料、PE再生料 | 90. 800 |
参考文献 | 方法 | 目标 | 准确率/% |
---|---|---|---|
张宇波等[33] | 比对分类后红外光谱的吸收峰峰强和峰数 | 塑料与泥土 | 89.000 |
李文环等[ | PCA和 BP 神经网络 | ABS、PP、PE、PET、PS、PVC、PC | 98.571 |
田静等[34] | PCA 结合 SIM⁃CA、K ⁃近邻、贝叶斯判别 | PP、PE | 100.000 |
马枭等[ | 利用样本之间的余弦相似度 | 35种塑料 | 97.100 |
文生平等[35] | 基于 KNN、LightGBM 和神经网络 | ABS、高密度聚乙烯(PE⁃HD)、低密度聚乙烯(PE⁃LD)、PET、PP、PS、PU、PVC | 91.000 |
张文杰等[ | 1D CNN和MSC⁃SVM | PP新生料、PP再生料、PE新生料、PE再生料 | 90. 800 |
技术难点 | 解决方案 | 现有技术方案 |
---|---|---|
构建不同塑料料片高速运动下近红外光谱图库 | 组合式低功耗非球面聚光卤素灯光源进行图像采集 | (1)已改进的小功率非球面聚光卤素灯光源;(2)组合式多视角光路设计 |
近红外光谱微弱信号探测与信号校正方法研究 | 进行非线性最小二乘法多光谱图像校正与识别 | 收集废旧汽车不同塑料料片样品,采用化学计量学方法初选波长,建立模型 |
FPGA硬件架构下多视角图像校正与识别方法 | 进行FPGA硬件架构下高效智能分拣软件开发 | (1)已搭建汽车废旧塑料分选装备控制系统架构; (2)通过持向量机方法分拣模式判别方法,进行算法软件编程 |
技术难点 | 解决方案 | 现有技术方案 |
---|---|---|
构建不同塑料料片高速运动下近红外光谱图库 | 组合式低功耗非球面聚光卤素灯光源进行图像采集 | (1)已改进的小功率非球面聚光卤素灯光源;(2)组合式多视角光路设计 |
近红外光谱微弱信号探测与信号校正方法研究 | 进行非线性最小二乘法多光谱图像校正与识别 | 收集废旧汽车不同塑料料片样品,采用化学计量学方法初选波长,建立模型 |
FPGA硬件架构下多视角图像校正与识别方法 | 进行FPGA硬件架构下高效智能分拣软件开发 | (1)已搭建汽车废旧塑料分选装备控制系统架构; (2)通过持向量机方法分拣模式判别方法,进行算法软件编程 |
1 | 樊许娜,陈永艳,邢方潇,等.显微拉曼光谱法和显微红外光谱法检测饮用水中微塑料的初步比较研究[J].环境卫生学杂志,2023,13(01):54⁃59. |
FAN X N, CHEN Y Y, XING F X,et al. Preliminary comparative study on the determination of microplastics in drinking water by micro⁃Raman spectroscopy and micro⁃infrared spectroscopy [J]. Journal of Environmental Hygiene, 2023, 13 (01): 54⁃59. | |
2 | 吴 雪,冯巍巍,蔡宗岐,等.近红外光谱的海水微塑料快速识别[J].光谱学与光谱分析,2022,42(11):3 501⁃3 506. |
Wu X, FENG W W, CAI Z Q, et al. Rapid identification of seawater microplastics by near infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2022,42 (11): 3 501⁃3 506. | |
3 | 苏东斌,李开开,高飞龙,等.红外光谱结合化学计量学对塑料包装材料的检验[J].上海塑料,2022,50(04):49⁃56. |
SU D B, LI K K, GAO F L, et al. Inspection of plastic packaging materials by infrared spectroscopy combined with chemometrics [J]. Shanghai Plastics, 2022,50 (04): 49⁃56. | |
4 | 秦 丽,王军磊.红外光谱法检测食盐中微塑料研究[J].食品安全导刊,2022(15):88⁃92. |
QIN L, WANG J L. Study on the determination of microplastics in salt by infrared spectroscopy [J]. Food Safety Guide, 2022 (15): 88⁃92. | |
5 | 孙稚菁,姜 浩,王 莹,等.生物降解塑料快速检测方法研究进展[J].合成树脂及塑料,2022,39(03):64⁃68+79. |
SUN Z J, JIANG H, WANG Y, et al. Research progress on rapid detection methods of biodegradable plastics [J]. Synthetic Resins and Plastics, 2022, 39 (03): 64⁃68+79. | |
6 | 魏晓晓,崔 芃,王大海,等.红外光谱法快速鉴别可降解一次性塑料制品[J].分析仪器,2022(01):36⁃41. |
WEI X X, CUI X, WANG D H, et al. Rapid identification of degradable disposable plastic products by infrared spectroscopy [J]. Analytical Instrument, 2022 (01): 36⁃41. | |
7 | 秦倩倩,孙发哲,高志.红外光谱技术在塑料中的应用[J].广东化工,2021,48(22):112⁃113. |
QIN Q Q, SUN F Z, GAO Z. Application of infrared spectroscopy in plastics [J]. Guangdong Chemical Industry, 2021,48 (22): 112⁃113. | |
8 | 孙琳琳,张 磊.傅立叶红外光谱(ATR)法快速鉴别塑料拉杆箱材质[J].中国检验检测,2021,29(06):37⁃39. |
SUN L L, ZHANG L. Rapid identification of plastic drawbar box material by Fourier transform infrared spectroscopy (ATR) [J]. China inspection and testing, 2021,29 (06): 37⁃39. | |
9 | 周世毅,韩 燕,程 瑶.红外光谱法鉴别塑料包装材料[J].广东化工,2021,48(18):169⁃172+165. |
ZHOU S Y, HAN Y, CHENG Y. Identification of plastic packaging materials by infrared spectroscopy [J]. Guangdong Chemical Industry, 2021. 48 (18): 169⁃172+165. | |
10 | 熊 婧,石 岩,魏 锋,等.基于数据处理及分析技术的牛黄类药材红外光谱研究[J].中国药学杂志,2023,58(08):730⁃736. |
XIONG J, SHI Y, WEI F, et al. Infrared spectroscopy of bovis based on data processing and analysis [J]. Chinese Journal of Pharmaceutical Sciences, 2019,58(08):730⁃736. | |
11 | 李子仪,李瑞兰,李灿琳,等.傅里叶红外光谱结合化学计量学的渣驯优劣鉴别研究[J].光谱学与光谱分析,2023,43(02):526⁃532. |
LI Z Y, LI R L, LI C L, et al. Identification of slag properties by Fourier infrared spectroscopy combined with chemometrics [J]. Spectroscopy and Spectral Analysis, 2019,43(02):526⁃532. | |
12 | 鞠 薇,鲁昌华,张玉钧,等.集成学习结合波长选取的有机物红外光谱定量回归方法研究[J].光谱学与光谱分析,2023,43(01):239⁃247. |
JU W, LU C H, ZHANG Y Y, et al. Quantitative regression method of infrared spectrum of organic matter based on ensemble learning combined with wavelength selection [J]. Spectroscopy and Spectral Analysis, 2019,43(01):239⁃247. | |
13 | 王 磊,宦克为,刘小溪,等.基于卷积神经网络的近红外光谱全流程分析模型研究[J].分析化学,2022,50(12):1 918⁃1 926. |
WANG L, HUAN K W, LIU X X, et al. Based on convolutional neural network the near infrared spectra of the whole research process analysis model [J]. Journal of analytical chemistry, 2022, 50 (12) : 1 918⁃1 926. | |
14 | 唐春兰.基于卷积神经网络的近红外光谱文本数据匹配检测方法[J].激光杂志,2022,43(10):106⁃110. |
TANG C L. Matching detection method of near infrared spectral text data based on Convolutional neural network [J]. Laser, 2022,43(10) : 106⁃110. | |
15 | 黄 强,范 辉.新书推荐:近红外光谱科普书《点亮我们生活的近红外光谱》出版[J].光谱学与光谱分析,2022,42(09):2 835. |
HUANG Q, FAN H. New book recommendation: Near infrared spectroscopy popular science book “Light up our lives Near infrared spectroscopy” published [J]. Spectroscopy and Spectral Analysis, 2012,42(09):2 835. | |
16 | 林 翔,李 娟,彭熙琳,等.透射与衰减全反射:红外光谱测试的实际案例及讨论[J].实验科学与技术,2022,20(04):76⁃81. |
LIN X, LI J, PENG X L, et al. Transmission and attenuated total reflection: practical cases and discussion of infrared spectroscopy testing [J]. Experimental Science and Technology, 2022,20 (04): 76⁃81. | |
17 | 胡 婷,徐泰燕.温度与近红外光谱检测结果间关系的数学模型研究[J].激光杂志,2022,43(08):185⁃189. |
HU T, XU T Y. Study on the mathematical model of the relationship between temperature and near infrared spectroscopy [J]. Laser Magazine, 2022,43 (08): 185⁃189. | |
18 | 汤庆峰,李琴梅,王佳敏,等.显微⁃傅里叶变换红外光谱鉴别分析微塑料[J].中国塑料,2021,35(08):172⁃180. |
TANG Q F, LI Q M, WANG J M, et al. Identification and analysis of microplastics by micro⁃Fourier transform infrared spectroscopy [J]. China Plastics, 2021,35 (08): 172⁃180. | |
19 | 李 建.塑料水杯的傅立叶红外光谱(ATR)法鉴别[J].合成材料老化与应用,2021,50(02):46⁃47. |
LI J. Identification of plastic water cup by Fourier transform infrared spectroscopy (ATR) [J]. Aging and Application of synthetic Materials, 2021,50 (02): 46⁃47. | |
20 | 罗枝伟,李正全,柳亚玲,等.傅里叶变换衰减全反射红外光谱分析塑料的润滑剂[J].广东化工,2019,46(24):24⁃25. |
LUO Z W, LI Z Q, LIU Y L, et al. Fourier transform attenuated total reflectance infrared spectroscopy analysis of plastic lubricants [J]. Guangdong Chemical Industry, 2019,46 (24): 24⁃25. | |
21 | 陈 仓,周 苇,冯晓羽.基于红外光谱法及X⁃射线荧光能谱法检验电缆塑料护套的研究[J].科学技术创新,2020(09):18⁃24. |
CHEN C, ZHOU W, FENG X Y. Study on Inspection of cable plastic jacket based on infrared spectroscopy and X⁃ray fluorescence spectrometry [J]. Science and Technology Innovation,2020(09):18⁃24. | |
22 | 宋小娇.红外光谱技术检验汽车保险杠塑料[J].工程塑料应用,2017,45(09):105⁃110. |
SONG X J. Inspection of automobile bumper plastics by infrared spectroscopy [J]. Application of Engineering Plastics, 2017,45 (09): 105⁃110. | |
23 | 张砾匀.红外光谱(ATR)法鉴别PP和ABS塑料下水管材质[J].合成材料老化与应用,2018,47(06):57⁃59. |
ZHANG J Y. Identification of PP and ABS plastic sewers by infrared spectroscopy (ATR) [J]. Aging and Application of synthetic Materials, 2018,47 (06): 57⁃59. | |
24 | 黄 冰,王孝红,蒋 萍.基于近红外光谱检测技术的水泥生料成分含量检测研究[J].光谱学与光谱分析,2022,42(03):737⁃742. |
HUANG B, WANG X H, JIANG P. Study on component content detection of cement raw meal based on near infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2022,42 (03): 737⁃742. | |
25 | 李敬岩,褚小立,刘 丹,等.Web近红外光谱原油快评技术开发与应用[J].石油学报(石油加工),2022,38(03):710⁃717. |
LI J Y, CHU X L, LIU D, et al. Development and application of web near infrared spectroscopy for rapid evaluation of crude oil [J]. Journal of Petroleum (Petroleum processing), 2022 38 (03): 710⁃717. | |
26 | 刘庭恺,胡子康,龙婉君,等.基于近红外和中红外光谱的杜仲产地溯源[J].化学试剂,2022,44(07):952⁃959. |
LIU T K, HU Z K, LONG W J, et al. Source traceability of Eucommia ulmoides based on near⁃infrared and mid⁃infrared spectra [J]. Chemical Reagent, 2022, 44 (07): 952⁃959. | |
27 | 孙学辉,赵 冰,骆 震,等.近红外光谱判别分析滤波器的设计与应用[J].光谱学与光谱分析,2022,42(02):399⁃404. |
SUN X H, ZHAO B, LUO Z, et al. Design and application of near infrared discriminant analysis filter [J]. Spectroscopy and Spectral Analysis, 2022,42 (02): 399⁃404. | |
28 | 陈 博,孙鹤鹏,席剑辉,等.红外光谱特征提取及目标聚类方法[J].沈阳航空航天大学学报,2021,38(06):51⁃59. |
CHEN B, SUN H P, XI J H, et al. Infrared spectrum feature extraction and target clustering method [J]. Journal of Shenyang University of Aeronautics and Astronautics, 2021,38 (06): 51⁃59. | |
29 | 周淑美,曹佳梦,张 宁,等.红外光谱在可降解塑料包装材质分析中的应用[J].绿色包装,2022(01):20⁃24. |
ZHOU S M, CAO J M, ZHANG N, et al. Application of infrared spectroscopy in material analysis of degradable plastic packaging [J]. Green Packaging,2022(01):20⁃24. | |
30 | 李文环,金尚忠,陈玲玲,等.基于近红外光谱结合主成分分析和BP神经网络的常用塑料快速鉴别[J].塑料工业,2016,44(12):124⁃127+137. |
LI W H, JIN S Z, CHEN L L, et al. Rapid identification of common plastics based on near infrared spectroscopy combined with principal component analysis and BP neural network [J]. Plastics Industry, 2016,44 (12): 124⁃127+137. | |
31 | 马 枭,姜 红,杨佳琦,等.基于化学计量学的一次性塑料餐盒红外光谱分析[J].分析科学学报,2020,36(02):245⁃249. |
MA X, JIANG H, YANG J Q, et al. Infrared spectrum analysis of disposable plastic lunch box based on chemometrics [J]. Journal of Analytical Science, 2020,36 (02): 245⁃249. | |
32 | 张文杰,焦安然,田 静,等.卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用[J].分析测试学报,2021,40(07):1 062⁃1 067. |
ZHANG W J, JIAO A R, TIAN J, et al. Model application of convolution neural network and support vector machine algorithm in near infrared spectrum classification of plastics [J]. Journal of Analysis and testing, 2021,40 (07): 1 062⁃1 067. |
[1] | 张玉霞, 杨涛. 关于构建塑料包装废弃物的分类、收集与管理体系的思考[J]. 中国塑料, 2021, 35(8): 21-29. |
[2] | 蔡毅, 田晖, 谢淼雪. 废旧家用电器塑料资源化利用及发展趋势[J]. 中国塑料, 2021, 35(8): 77-83. |
[3] | 向光会, 俞文骥. 二醋酸纤维素塑料生产中挥发分的脱除与利用[J]. 中国塑料, 2020, 34(12): 47-52. |
[4] | 孟正华, 许欢, 郭巍, 王辉, 华林. 汽车废旧塑料物理改性再生技术研究进展[J]. 中国塑料, 2017, 31(08): 105-111 . |
[5] | 胡彪, 吴贺君, 卢灿辉. 废弃交联聚乙烯回收利用研究进展[J]. 中国塑料, 2015, 29(09): 1-5 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||