1 |
Belbruno J J. Molecularly imprinted polymers[J]. Chemical Review, 2019, 119(1): 94⁃119.
|
2 |
李会萍, 王江涛. 分子印迹纳米材料研究进展[J]. 中国粉体技术, 2020, (1): 22⁃28.
|
|
LI H P, WANG J.T. Research progress of molecularly imprinted nanomaterials [J]. China Powder Technology, 2020, (1): 22⁃28.
|
3 |
陈昱安, 顾丽莉, 师君丽, 等. 西草净分子印迹电化学传感器的制备及应用[J]. 农药学学报, 2020, 22(3): 483⁃492.
|
|
CHEN Y A, GU L L, SHI J L, et al. Preparation and application of simetryn molecular imprinted electrochemical sensor [J]. J Pesticide Science, 2020, 22(3): 483⁃492.
|
4 |
李俣珠, 李增威, 曾 月,等. 分子印迹传感器的制备方法与应用进展[J]. 化学世界, 2019, 60(8): 465⁃475.
|
|
LI Y Z, LI Z W, ZENG Y, et al. Progress of preparation and application molecular imprinting sensor [J]. Chemical World, 2019, 60(8): 465⁃475.
|
5 |
Alam M W, Islam Bhat S, Al Qahtani H S, et al. Recent pro⁃gress, challenges, and trends in polymer⁃based sensors: a review[J]. Polymers, 2022, 14(11): 2 164.
|
6 |
马春慧, 秦旭阳, 许慧娟, 等. 电极修饰材料在分子印迹电化学传感器的应用研究进展[J]. 林产化学与工业, 2023, 43(4): 127⁃139.
|
|
MA C H, QIN X Y, XU H J, et al. Research progress on the application of electrode modification materials in molecularly imprinted electrochemical sensors [J]. Chemistry and Industry of Forest Products, 2023, 43(4): 127⁃139.
|
7 |
Ahmad O S, Bedwell T S, Esen C, et al. Molecularly imprinted polymers in electrochemical and optical sensors[J]. Trends Biotechnol., 2019, 37(3): 294⁃309.
|
8 |
马煜萱, 李 靖, 许 愿, 等. 分子印迹技术在四环素类抗生素处理中的应用进展[J]. 应用化工, 2022 (5): 51.
|
|
MA Y X, LI J, XU Y, et al. Review on application of molecular imprinting technology in tetracycline antibiotics [J]. Applied Chemical Industry, 2022 (5): 51
|
9 |
Wu W, Jia M, Zhang Z, et al. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi⁃walled carbon nanotubes sensor[J]. Ecotoxicology and Environmental Safety, 2019, 175: 243⁃250.
|
10 |
高 庆, 陈 凯, 黄 浩, 等. 双重分子印迹电化学传感器测定氯霉素的研究[J]. 化学研究与应用, 2022, 34(8): 1 735⁃1 746.
|
|
GAO Q, CHEN K, HUANG H, et al. Study on determination of chloramphenicol by double molecularly imprinted electrochemical sensor [J]. Chemical Research and Application, 2022, 34(8): 1 735⁃1 746.
|
11 |
Shamsipur M, Moradi N, Pashabadi A. Coupled electrochemical⁃chemical procedure used in construction of molecularly imprinted polymer⁃based electrode: a highly sensitive impedimetric melamine sensor[J]. Journal of Solid State Electrochemistry, 2018, 22(1): 169⁃180.
|
12 |
Asaad Abdullah Sfoog A, Abu Bakar N, Abdul Rahim N, et al. Recent advances and future prospects of molecular imprinting polymers as a recognition sensing system for food analysis: A review[J]. Indonesian Journal of Chemistry, 2022, 22(6): 1737⁃1758.
|
13 |
Blanco⁃Lopez M C, Lobo⁃Castanon M J, Miranda⁃Ordieres A J, et al. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer⁃modified electrodes[J]. Biosensors & Bioelectronics, 2003, 18(4): 353⁃362.
|
14 |
Malitesta C, Losito I, Zambonin P G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors[J]. Analytical Chemistry, 1999, 71(7): 1 366⁃1 370.
|
15 |
程寿年, 任书芳, 冯润妍, 等. 分子印迹技术在电化学传感领域的应用研究进展[J]. 分析科学学报, 2021(6): 37.
|
|
CHENG S N, REN S F, FENG R Y, et al. Research progress of the molecular imprinting technology in electrochemical sensing [J]. Chinese Journal of Analytical Sciences, 2021(6): 37.
|
16 |
Wang H W, Yao S, Liu Y Q, et al. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi⁃walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs[J]. Biosensors & Bioelectronics, 2017, 87: 417⁃421.
|
17 |
Ertürk G, Akhoundian M, Lueg⁃Althoff K, et al. Bisphosphonate ligand mediated ultrasensitive capacitive protein sensor: complementary match of supramolecular and dynamic chemistry[J]. New J Chem, 2019, 43(2): 847⁃852.
|
18 |
Zhou H, Qiu H, Zhang J, et al. Design, preparation, and application of molecularly imprinted nanomaterials for food safety analysis with electrochemistry[J]. Coordination Chemistry Reviews, 2024, 500: 215523.
|
19 |
Fang X, Zeng Z, Li Q, et al. Ultrasensitive detection of disinfection byproduct trichloroacetamide in drinking water with Ag nanoprism@MoS2 heterostructure⁃based electrochemical sensor[J]. Sensors and Actuators B: Chemical, 2021, 332: 129526.
|
20 |
李 锋, 王 莉, 刘国艳, 等. 基于分子印迹膜的电导型传感器检测牛乳中琥珀酸氯霉素残留[J]. 上海交通大学学报:农业科学版, 2009 (6): 6.
|
|
LI F, WANG L, LIU G Y, et al. A Conductometric sensor for determination of hs⁃cap in milk based on molecularly imprinted films[J]. Journal of Shanghai Jiao Tong University: Agricultural Science Edition, 2009 (6): 6.
|
21 |
D'aurelio R, Chianella I, Goode J A, et al. Molecularly imprinted nanoparticles based sensor for cocaine detection[J]. Biosensors (Basel), 2020, 10(3):22.
|
22 |
Li P, Liang R, Yang X, et al. Imprinted nanobead⁃based disposable screen⁃printed potentiometric sensor for highly sensitive detection of 2⁃naphthoic acid[J]. Mater. Lett., 2018, 225: 138⁃141.
|
23 |
Wei M, Geng X, Liu Y, et al. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin[J]. J Electroanal Chem, 2019, 842: 184⁃192.
|
24 |
张 浩, 韩书磊, 陈 欢, 等. 烟草及其制品中游离烟碱的测定方法研究进展[J]. 食品与机械, 2022 (4): 38.
|
|
ZHANG H, HAN S L, CHEN H, et al. Research progress on the determination of free⁃base nicotine in tobacco and tobacco products [J]. Food and Machinery, 2022 (4): 38.
|
25 |
卢丽娟,张弘韬, 周 浩,等. 烟草中游离态烟碱的测定[J]. 安徽农业科学, (36): 17 946⁃17 947,17 956.
|
|
LU L J, ZHANG H T, ZHOU H, et al. Determination on free nicotine in tobacco [J]. Anhui Agricultural Sciences, (36): 17 946⁃17 947, 17 956.
|
26 |
Qazi S, Shaikh H, Memon A A, et al. Molecular imprinted graphene oxide nanocomposite for optical sensing of nicotine in human blood plasma[J]. J Chem Soc Pak, 2020, 42(6): 856.
|
27 |
Shehata M, Zaki M, Fekry A M. New Au/chitosan nanocomposite modified carbon paste sensor for voltammetric detection of nicotine[J]. Scientific Reports, 2023, 13(1): 20 432.
|
28 |
李增良,顾丽莉, 唐徐禹,等. 烟碱分子印迹聚合物的制备与应用研究进展[J]. 化工新型材料, 2022, 50(11): 6.
|
|
LI Z L, GU L L, TANG X Y, et al. Progress in the preparation and application of nicotine molecularly imprinted polymers [J]. New Chemical Materials, 2022, 50(11): 6.
|
29 |
Parate K, Karunakaran C, Claussen J C. Electrochemical cotinine sensing with a molecularly imprinted polymer on a graphene⁃platinum nanoparticle modified carbon electrode towards cigarette smoke exposure monitoring[J]. Sensors and Actuators B: Chemical, 2019, 287: 165⁃172.
|
30 |
Ofoegbu O, Ike D C, E⁃S Batiha G, et al. Molecularly imprinted chitosan⁃based thin films with selectivity for nicotine derivatives for application as a bio⁃sensor and filter[J]. Polymers, 2021, 13(19): 3 363.
|
31 |
Wang L, Pagett M, Zhang W. Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications[J]. Sensors and Actuators Reports, 2023, 5: 100153.
|
32 |
常艳兵, 冯亚娟, 何 琼. Au⁃Pd合金纳米管修饰的尼古丁分子印迹膜传感器的研究[J]. 分析科学学报, 2016, 32(5): 5.
|
|
CHANG Y B, FENG Y J, HE Q. Study of nicotine molecularly imprinted membrane sensor modified by Au⁃Pd alloy[J]. Chinese Journal of Analytical Sciences, 2016, 32(5): 5.
|
33 |
郭 明, 靳秀一, 姜 岚, 等. 一维光子晶体传感器膜的应用. CN202010757452.X [P/OL] .
|
34 |
Jerome R, Sundramoorthy A K. Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample[J]. Anal Chim Acta, 2020, 1132: 110⁃120.
|
35 |
Wu C T, Chen P Y, Chen J G, et al. Detection of nicotine based on molecularly imprinted TiO2⁃modified electrodes[J]. Analytica Chimica Acta, 2009, 633(1): 119⁃126.
|
36 |
谢娟娟. 尼古丁分子印迹聚合物的制备、表征与固相萃取应用研究[D]. 合肥:中国科学技术大学, 2018.
|
37 |
Mehmeti E, Kilic T, Laur C, et al. Electrochemical determination of nicotine in smokers' sweat[J]. Microchemical Journal, 2020, 158: 105155.
|
38 |
Jing Y, Yu B, Li P, et al. Synthesis of graphene/DPA composite for determination of nicotine in tobacco products[J]. Scientific Reports, 2017, 7(1): 14332.
|
39 |
Amr A E G E, Kamel A H, Almehizia A A, et al. Based potentiometric sensors for nicotine determination in smokers’ sweat[J]. ACS Omega, 2021, 6(17): 11 340⁃11 347.
|