1 |
Kim S, Kim M C, Yeo B C, et al. High⁃throughput design of bimetallic core⁃shell catalysts for the electrochemical nitrogen reduction reaction [J]. Journal of Materials Chemistry A, 2023, 11(45): 24 686⁃24 697.
|
2 |
Nair A R, Vetrikarasan B T, Shinde S K, et al. Bifunctional CuO@CoV layered double hydroxide (LDH) core⁃shell heterostructure for electrochemical energy storage and electrocatalysis [J]. Fuel, 2024, 358: 130217.
|
3 |
Ren X, Wu C W, Li S Y, et al. Tuning interfacial thermal conductance of GaN/AlN heterostructure nanowires by constructing core/shell structure [J]. Journal of Physics⁃Condensed Matter, 2023, 35(11): 115302.
|
4 |
Bagal I V, Mane P, Arunachalam M, et al. Exploiting the complete efficacy of 3D⁃nitrogen⁃doped ZnO nanowires photoanode via type⁃Ⅱ ZnS core⁃shell formation toward highly stable photoelectrochemical water splitting [J]. Materials Today Physics, 2023, 34: 101087.
|
5 |
Li R P, Yu S M, Zhao Z Y. Boosting photoelectrochemical performance of CuFeO2/CuO photocathode by modulating heterojunction architecture and oxygen vacancies [J]. Applied Surface Science, 2023, 640: 158392.
|
6 |
Majumder S, Su X, Kim K H. Effective strategy of incorporating Co3O4 as a co⁃catalyst onto an innovative BiVO4/Fe2TiO5 core⁃shell heterojunction for effective photoelectrochemical water⁃splitting application [J]. Surfaces and Interfaces, 2023, 39: 102936.
|
7 |
Wang L, Liu Z, Ma Y, et al. Synergistic design of a semi⁃hollow core⁃shell structure and a metal⁃organic framework⁃derived Co/Zn selenide coated with MXene for high⁃performance lithium⁃sulfur batteries [J]. Dalton Transactions, 2024, 53(2): 572⁃581.
|
8 |
Liu X, Li F P, Peng W B, et al. Piezotronic and piezo⁃phototronic effects⁃enhanced core⁃shell structure⁃based nanowire field⁃effect transistors [J]. Micromachines, 2023, 14(7): 1 335.
|
9 |
Luo J L, Zheng Z, Yan S K, et al. Photocurrent enhanced in UV⁃vis⁃NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo⁃phototronic effect [J]. ACS Photonics, 2020, 7(6): 1 461⁃1 467.
|
10 |
Das S, Pal S, Larsson K, et al. Hydrothermally grown SnS2/Si nanowire core⁃shell heterostructure photodetector with excellent optoelectronic performances [J]. Applied Surface Science, 2023, 624: 157094.
|
11 |
McArdle S, Landon⁃Lane L, Marshall A T. Using single fibre electrodes to determine the spatial variability of rate constants across carbon felt electrodes [J]. Electrochemistry Communications, 2021, 131: 107122.
|
12 |
Neto D B D, Matsubara E Y, Dirican M, et al. Li intercalation in nonwoven carbon nanotube/carbon fiber felt electrode: Influence of carbon fiber type [J]. Diamond and Related Materials, 2021, 115: 108353.
|
13 |
Hu Q L, Duan Y F, Zheng X H, et al. Lightweight, flexible, and highly conductive recycled carbon fiber felt for electromagnetic interference shielding [J]. Journal of Alloys and Compounds, 2023, 935: 168152.
|
14 |
Xu X J, Yao F C, Abu Ali O A, et al. Adjustable core⁃sheath architecture of polyaniline⁃decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding [J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2 002⁃2 011.
|
15 |
Rana A K, Scarpa F, Thakur V K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications [J]. Industrial Crops and Products, 2022, 187: 115356.
|
16 |
Gao H, Wang C H, Yang Z J, et al. 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre⁃constructed macroscopic conductive framework [J]. Composites Science and Technology, 2021, 213: 108896.
|
17 |
Zhang Y, Pan T, Yang Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance [J]. Chemical Engineering Journal, 2020, 389: 124433.
|
18 |
Pan T, Zhang Y, Wang C H, et al. Mulberry⁃like polyaniline⁃based flexible composite fabrics with effective electromagnetic shielding capability [J]. Composites Science and Technology, 2020, 188: 107991.
|
19 |
Yu X H, Zhang H P, Wang Y F, et al. Highly stretchable, ultra⁃soft, and fast self⁃healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors [J]. Advanced Functional Materials, 2022, 32(33): 2204366.
|
20 |
Chen Y H, Su L X, Jiang M M, et al. Switch type PANI/ZnO core⁃shell microwire heterojunction for UV photodetection [J]. Journal of Materials Science & Technology, 2022, 105: 259⁃265.
|
21 |
Zheng R H, Chen Y X, Chi H, et al. 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator [J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57 441⁃57 449.
|