
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (3): 40-47.DOI: 10.19491/j.issn.1001-9278.2022.03.007
程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫()
收稿日期:
2021-11-12
出版日期:
2022-03-26
发布日期:
2022-03-25
通讯作者:
胡跃鑫(1981-),男,博士,副教授,硕士生导师,主要从事聚合物共混与改性等方面的研究,yxhu1981@163.com基金资助:
CHENG Manfang, BAI Jifeng, WANG Wenqing, LEI Liangcai, LI Haiying, HAN Xiangyan, HU Yuexin()
Received:
2021-11-12
Online:
2022-03-26
Published:
2022-03-25
Contact:
HU Yuexin
E-mail:yxhu1981@163.com
摘要:
以对氯甲基苯乙烯/乙烯基苄基氯(CMS/VBC)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸缩水甘油酯(GMA)、1?甲基咪唑(MIm)、双三氟甲烷磺酰亚胺锂(LITFSI)等为原料,通过活性/可控自由基聚合制备了超支化接枝多臂共聚物h?PCMS?g?PMMA、功能性嵌段共聚物PMMA?b?PGMA、离子液体嵌段共聚物PMMA?b?PIL?[MIm?TFSI],利用凝胶渗透色谱仪(GPC)、傅里叶变换红外光谱仪(FTIR)、核磁共振氢谱仪(1H?NMR)对其结构进行了确认。再通过溶液共混的方式将上述制备的聚合物混合,得到一系列超支化聚合离子液体共混体系,通过交流阻抗技术对该体系的离子电导率进行了考察。结果表明,离子液体链段PIL?[MIm?TFSI]、超支化结构、PGMA链段的引入均能有效增强该共混体系的离子电导率。
中图分类号:
程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47.
CHENG Manfang, BAI Jifeng, WANG Wenqing, LEI Liangcai, LI Haiying, HAN Xiangyan, HU Yuexin. Preparation and characterizations of polymeric ionic liquid blending system based on hyperbranched poly(p⁃chloromethylstyrene)[J]. China Plastics, 2022, 36(3): 40-47.
共混体系编号 | PIL⁃[MIm⁃TFSI] | h⁃PCMS | PGMA | PMMA |
---|---|---|---|---|
1# | 25.5 | 21.7 | 24.8 | 28.0 |
2# | 36.6 | 14.4 | 25.2 | 23.8 |
3# | 48.4 | 10.0 | 24.6 | 17.0 |
4# | 62.7 | 6.2 | 24.2 | 6.9 |
5# | 19.8 | 21.7 | 17.6 | 40.9 |
6# | 20.1 | 30.6 | 12.5 | 36.8 |
7# | 21.3 | 38.5 | 7.9 | 32.3 |
8# | 20.6 | 45.0 | 4.1 | 30.3 |
9# | 22.8 | 16.2 | 23.8 | 37.2 |
10# | 22.3 | 11.6 | 31.2 | 36.9 |
11# | 23.5 | 3.4 | 41.1 | 31.8 |
共混体系编号 | PIL⁃[MIm⁃TFSI] | h⁃PCMS | PGMA | PMMA |
---|---|---|---|---|
1# | 25.5 | 21.7 | 24.8 | 28.0 |
2# | 36.6 | 14.4 | 25.2 | 23.8 |
3# | 48.4 | 10.0 | 24.6 | 17.0 |
4# | 62.7 | 6.2 | 24.2 | 6.9 |
5# | 19.8 | 21.7 | 17.6 | 40.9 |
6# | 20.1 | 30.6 | 12.5 | 36.8 |
7# | 21.3 | 38.5 | 7.9 | 32.3 |
8# | 20.6 | 45.0 | 4.1 | 30.3 |
9# | 22.8 | 16.2 | 23.8 | 37.2 |
10# | 22.3 | 11.6 | 31.2 | 36.9 |
11# | 23.5 | 3.4 | 41.1 | 31.8 |
聚合物 | Mn/g·mol-1 | Mw/g·mol-1 | PDI |
---|---|---|---|
PMMA⁃CTA | 11 300 | 16 800 | 1.37 |
PMMA⁃b⁃PGMA | 25 400 | 38 400 | 1.51 |
聚合物 | Mn/g·mol-1 | Mw/g·mol-1 | PDI |
---|---|---|---|
PMMA⁃CTA | 11 300 | 16 800 | 1.37 |
PMMA⁃b⁃PGMA | 25 400 | 38 400 | 1.51 |
PGMA含量/% | PIL⁃[MIm⁃TFSI含量/% | 电导率/S•cm-1 |
---|---|---|
24.8 | 25.5 | 2.10×10-3 |
25.2 | 36.6 | 3.70×10-3 |
24.6 | 48.4 | 6.50×10-3 |
24.2 | 62.7 | 1.09×10-2 |
PGMA含量/% | PIL⁃[MIm⁃TFSI含量/% | 电导率/S•cm-1 |
---|---|---|
24.8 | 25.5 | 2.10×10-3 |
25.2 | 36.6 | 3.70×10-3 |
24.6 | 48.4 | 6.50×10-3 |
24.2 | 62.7 | 1.09×10-2 |
PIL⁃[MIm⁃TFSI]含量/% | h⁃PCMS含量/% | 电导率/×10-4S•cm-1 |
---|---|---|
19.8 | 21.7 | 1.90 |
20.1 | 30.6 | 2.83 |
21.3 | 38.5 | 3.39 |
20.6 | 45.0 | 5.37 |
PIL⁃[MIm⁃TFSI]含量/% | h⁃PCMS含量/% | 电导率/×10-4S•cm-1 |
---|---|---|
19.8 | 21.7 | 1.90 |
20.1 | 30.6 | 2.83 |
21.3 | 38.5 | 3.39 |
20.6 | 45.0 | 5.37 |
PIL⁃[MIm⁃TFSI] 含量/% | PGMA 含量/% | 电导率/ ×10-4S•cm-1 |
---|---|---|
22.8 | 23.8 | 3.00 |
22.3 | 31.2 | 5.65 |
23.5 | 41.1 | 8.65 |
PIL⁃[MIm⁃TFSI] 含量/% | PGMA 含量/% | 电导率/ ×10-4S•cm-1 |
---|---|---|
22.8 | 23.8 | 3.00 |
22.3 | 31.2 | 5.65 |
23.5 | 41.1 | 8.65 |
1 | ZHANG B J, YAO L, LIU X D, et al. Facilely recyclable Cu(II) macrocomplex with thermoregulated poly(ionic li⁃quid) macroligand: serving as a highly efficient atom transfer radical polymerization catalyst[J]. Acs Sustainable Chemistry & Engineering, 2016, 4(12): 7 066⁃7 073. |
2 | PORCARELLIL A, SHAPLOVA, SALSAMENDI M, et al. Single⁃ion block copoly(ionic liquid)s as electrolytes for all⁃solid state lithium batteries[J]. ACS Applied Materials Interfaces, 2016, 8(16): 10 350⁃10 359. |
3 | NYKAZE J, BENJAMIN R, MEEK K, et al. Polyme⁃rized ionic liquid diblock copolymer as an ionomer and anion exchange membrane for alkaline fuel cells[J]. Chemical Engineering Science, 2016, 154: 119⁃127. |
4 | JONGBAEK P, MEHMET I, HEAJUNG P, et al. Polystyrene⁃block⁃poly(ionic liquid) copolymers as work function modifiers in inverted organic photovoltaic cells[J]. ACS Applied Materials Interfaces, 2018, 10(5): 4 887. |
5 | DU C H, MA X M, LI J, et al. Improving the charged and antifouling properties of PVDF ultrafiltration membranes by blending with polymerized ionic liquid copolymer P(MMA⁃b⁃MEBIm⁃Br)[J]. Journal of Applied Polymer Science, 2017, 134(17): 44 751⁃44 759. |
6 | ZHU X Y, ZHOU Y F, YAN D Y. Influence of branching architecture on polymer properties[J]. Journal of Polymer Science Part B Polymer Physics, 2011, 49(18):1 277⁃1 286. |
7 | 张鹏飞. 超支化聚合物的合成与改性及其在涂料上的应用[D]. 兰州:兰州理工大学, 2013. |
8 | ARISTOFANIS V, THANASIS C, VALADOULA D, et al. New pyridinium type poly(ionic liquids) as membranes for CO2 separation[J]. Polymers, 2018, 10(8):912⁃931. |
9 | MATANDABUZO M, AJIBADE P. Vinyl pyridinium polymeric ionic liquid functionalized carbon nanotube composites as adsorbent for chromium(VI) in aqueous solution[J]. Journal of Molecular Liquids, 2019, 296:111 778⁃111 788. |
10 | KAWAIR, YADA S, YOSHIMURA T, et al. Characterization and solution properties of quaternary⁃ammonium⁃salt⁃type amphiphilic gemini ionic liquids[J]. ACS Omega, 2019, 4(10):14 242⁃14 250. |
11 | ELHAJ E, WANG H J, GU Y L, et al. Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and ecient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate[J]. Molecular Catalysis, 2019, 468: 19⁃28. |
12 | CAI Y G, XU T G, NICOLASVON S, et al. Multifunctional imidazolium⁃based ionic liquid as additive for silicon/carbon lithium ion batteries[J]. Electrochimica Acta, 2020, 340:135 990⁃135 998. |
13 | IIJIMAG U, KITAGAWA T, KATAYAMA A, et al. CO2 reduction promoted by imidazole supported on a phosphonium⁃type ionic⁃liquid⁃modified au electrode at a low overpotential[J]. ACS Catalysis, 2018, 8(3):1 990⁃2 000. |
14 | JOHNT L, DEBBY F, RONALD S, et al. Functional polymers from novel carboxyl⁃terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules. 2002, 35(18): 6 754⁃6 756. |
15 | WANGA L, XU H, LIU X, et al. The synthesis of a hyperbranched star polymeric ionic liquid and its application in a polymer electrolyte[J]. Polymer Chemistry, 2017, (8):3 177⁃3 185. |
16 | HOU Z L, HUANG T, ZHOU C Y,et al. Polymer vesicle sensor through the self⁃assembly of hyperbranched polymeric ionic liquids for the detection of SO2 derivatives[J]. Chinese Journal of Polymer Science, 2017, 35(5): 602⁃610. |
17 | CHEN S Y, ZHANG J H, ZHOU J L, et al. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid[J]. Chemical Engineering Journal, 2018, 334:1 371⁃1 382. |
18 | 金妮, 李致轩, 海智宝, 等. ATRP/RAFT联用制备星型多臂共聚物 h⁃PCMS⁃g⁃PMMA⁃b⁃PBMA[J]. 合成化学, 2019, 27(5): 351⁃356. |
JIN N, LI Z X, HAI Z B, et al. Preparation of star⁃shaped multi⁃arm copolymer h⁃PCMS⁃g⁃PMMA⁃b⁃PBMA by ATRP/RAFT combination[J]. Synthetic Chemi⁃stry, 2019, 27(5): 351⁃356. | |
19 | LAI J T, DEBBY F, RONALD S, et al. Functional polymers from novel carboxyl⁃terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules, 2002, 35: 6 754⁃6 756. |
20 | 王俊豪, 沈越, 金妮,等. 三嵌段聚合离子液体共聚物PMMA⁃b⁃PBMA⁃b⁃PILs的合成及表征[J]. 化工新型材料, 2019, 47(3):134⁃139. |
WANG J H, SHEN Y, JIN N, et al. Synthesis and characterization of triblock polymerized ionic liquid copolymer PMMA⁃b⁃PBMA⁃b⁃PILs[J]. New Chemical Materials, 2019, 47(3):134⁃139. |
[1] | 彭凡畅, 陈小随, 张爱清, 周洪福. 超支化聚磷酰胺包覆碳纳米管的可控制备及阻燃应用[J]. 中国塑料, 2021, 35(9): 55-63. |
[2] | 吴悠, 王博华, 孙健健, 靳玉娟. 端环氧基型超支化聚合物对PPC/PBS共混物的改性研究[J]. 中国塑料, 2021, 35(4): 5-11. |
[3] | 董炳廷, 臧萌, 尹凯, 信春玲, 何亚东. 超支化聚酰胺强化热塑性聚氨酯结晶及发泡性能的研究[J]. 中国塑料, 2021, 35(11): 1-6. |
[4] | 李美兰, 何娇, 龚伟, 贺肖妮, 来倩, 刘白玲. 无磷型绿色端羧基超支化聚酯的制备及其阻垢行为研究[J]. 中国塑料, 2021, 35(11): 55-63. |
[5] | 许伟坤, 王慧丽, 董亿政, 袁辉强, 范萍. 超支化聚酯在环氧树脂改性中的研究进展[J]. 中国塑料, 2021, 35(1): 110-123. |
[6] | 李美兰, 贺子纯, 穆凯飞, 龚伟, 来倩, 杨萌, 刘白玲. 端羧基超支化型绿色阻垢剂的制备及阻垢性能[J]. 中国塑料, 2020, 34(9): 38-45. |
[7] | 翟微, 孙健健, 王博华, 滕冲, 谢时宇, 郝凤昊, 靳玉娟. 胺端基型超支化乙二胺三嗪聚合物对PLA/PPC的增韧改性研究[J]. 中国塑料, 2020, 34(6): 27-33. |
[8] | 张颖 马玉录 谢林生. 基于聚偏氟乙烯/石墨的换热板片材料的制备及导热性能研究[J]. 中国塑料, 2018, 32(09): 25-31. |
[9] | 张静;靳玉娟;翁云宣;王娥娥. 端环氧型超支化聚酯对聚(3-羟基丁酸戊酸共聚酯)的改性研究[J]. 中国塑料, 2016, 30(10): 42-49 . |
[10] | 张文龙;吕玲;梁月;戴亚杰. 红外光谱法研究TPU/SEBS的相容性[J]. 中国塑料, 2016, 30(10): 36-41 . |
[11] | 李翠勤;孙鹏;康伟伟;郭苏月;王俊;王宝辉. 超支化桥联受阻酚在聚乙烯中的抗氧化性能研究[J]. 中国塑料, 2016, 30(08): 43-49 . |
[12] | 张敏;许小玲;宋吉青;何文清. 自组装功能高分子材料表面的相互作用[J]. 中国塑料, 2016, 30(02): 11-19 . |
[13] | 王晓君;刘吉平;赵伟;毕晓露;王栋. 四唑基聚合物的研究进展[J]. 中国塑料, 2015, 29(11): 1-6 . |
[14] | 孙可;曹燊钊;杨其;赵汪洋. 长支链聚丙烯增容聚丙烯共混物的研究[J]. 中国塑料, 2014, 28(05): 27-31 . |
[15] | 赵文静;麦永懿;张炜;叶纯麟;李志. 原子转移自由基聚合在纳米粒子改性方面的研究进展[J]. 中国塑料, 2014, 28(04): 0-13 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||