
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (8): 113-117.DOI: 10.19491/j.issn.1001-9278.2024.08.018
• 综述 • 上一篇
收稿日期:
2024-01-29
出版日期:
2024-08-26
发布日期:
2024-08-19
作者简介:
郑天宜(1994—), 女,工程师,从事电活性材料与骨组织工程等研究,zhengty.bjhy@sinopec.com
ZHENG Tianyi(), ZHANG Ben, GUO Min, WANG Ying
Received:
2024-01-29
Online:
2024-08-26
Published:
2024-08-19
摘要:
天然骨组织具有压电特性,重建缺损部位的局部电微环境是刺激骨再生的有效策略。电活性高分子材料能够仿生骨组织压电特性,修复缺损处生理学电微环境,进而促进骨组织再生修复。本文分类介绍了几种类型的电活性高分子材料,包括导电高分子、压电高分子和驻极体高分子材料,概述了其在骨组织修复领域的研究进展,并分析了不同材料的优势与挑战。
中图分类号:
郑天宜, 张犇, 郭敏, 王颖. 用于骨组织再生的电活性高分子材料研究进展[J]. 中国塑料, 2024, 38(8): 113-117.
ZHENG Tianyi, ZHANG Ben, GUO Min, WANG Ying. Research progress in electroactive polymer materials for bone tissue regeneration[J]. China Plastics, 2024, 38(8): 113-117.
1 | KAO F C, CHIU P Y, TSAI T T, et al. The application of nanogenerators and piezoelectricity in osteogenesis [J]. Science and Technology of Advanced Materials, 2019, 20(1): 1 103⁃1 117. |
2 | FUKADA E, YASUDA I. On the piezoelectric effect of bone [J]. Journal of the Physical Society of Japan, 1957, 12(10): 1 158⁃1 162. |
3 | Lipiec Ewelina W, Kowalska Joanna K, Wiecheć Anna,et al. Infrared spectroscopy in molecular study of the piezoelectric effect in pig′s shin bone [J]. Acta Physica Polonica, 2012, 121: 16⁃21. |
4 | REN K, WILSON W, WEST J, et al. Piezoelectric property of hot pressed electrospun poly(γ⁃benzyl⁃α, l⁃glutamate) fibers [J]. Applied Physics A, 2012, 107: 639⁃646. |
5 | TANG Y, WU C, WU Z, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration [J]. Scientific Reports, 2017, 7: 43360. |
6 | AHN A C, GRODZINSKY A J. Relevance of collagen piezoelectricity to “wolff"s law: A critical review [J]. Medical Engineering & Physics, 2009, 31(7): 733⁃741. |
7 | LIM H L, CHUANG J C, TRAN T, et al. Dynamic electromechanical hydrogel matrices for stem cell culture [J]. Advanced Functional Materials, 2011, 21(1): 55⁃63. |
8 | ZIGMAN T, DAVILA S, DOBRIC I, et al. Intraoperative measurement of bone electrical potential: A piece in the puzzle of understanding fracture healing [J]. Injury, 2013, 44: 16⁃19. |
9 | NAUTH A, SCHEMITSCH E, NORRIS B, et al. Critical⁃size bone defects: Is there a consensus for diagnosis and treatment? [J]. Journal of Orthopaedic Trauma, 2018, 32: 7⁃11. |
10 | YAZDIMAMAGHANI M, RAZAVI M, MOZAFARI M, et al. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4⁃ethylenedioxythiophene):Poly(4⁃styrene sulfonate) (PEDOT: PSS) [J]. Journal of Materials Science: Materials in Medicine, 2015, 26(12): 274. |
11 | JING W, HUANG Y, WEI P, et al. Roles of electrical stimulation in promoting osteogenic differentiation of bmscs on conductive fibers [J]. Journal of Industrial and Engineering Chemistry, 2019, 107(7): 1 443⁃1 454. |
12 | GAJENDIRAN M, CHOI J, KIM S⁃J, et al. Conductive biomaterials for tissue engineering applications [J]. Journal of Industrial and Engineering Chemistry, 2017, 51: 12⁃26. |
13 | NASAJPOUR⁃ESFAHANI N, DASTAN D, ALIZADEH A, et al. A critical review on intrinsic conducting polymers and their applications[J]. Journal of Industrial and Engineering Chemistry, 2023, 125: 14⁃37. |
14 | LOU C⁃W, WEI M, LI J, et al. Electroactive HA/PDA/PPy stents applied for bone tissue engineering by layer⁃by⁃layer strategy [J]. Progress in Organic Coatings, 2023, 183:107820. |
15 | WU C, HE X, ZHU Y, et al. Electrochemical deposition of PPy/Dex/ECM coatings and their regulation on cellular responses through electrical controlled drug release [J]. Colloids and Surfaces B: Biointerfaces, 2023, 222: 113016. |
16 | MAI X, KANG Z, WANG N, et al. Oxygen plasma technology⁃assisted preparation of three⁃dimensional reduced graphene oxide/polypyrrole/strontium composite scaffold for repair of bone defects caused by osteoporosis [J]. Molecules, 2021, 26(15): 4451. |
17 | KAZEMI F, NAGHIB S M, ZARE Y, et al. Biosensing applications of polyaniline (PANi)⁃based nanocomposites: A review [J]. Polymer Reviews, 2021, 61(3): 553⁃597. |
18 | YAN H, WANG C, ZHANG Q, et al. Conductive polyaniline particles regulating in vitro hydrolytic degradation and erosion of hydroxyapatite/poly(lactide⁃co⁃glycolide) porous scaffolds for bone tissue engineering [J]. ACS Biomaterials Science & Engineering, 2023, 9(3): 1 541⁃1 557. |
19 | SHENG R, MU J, CHERNOZEM R V, et al. Fabrication and characterization of piezoelectric polymer composites and cytocompatibility with mesenchymal stem cells [J]. ACS Applied Materials & Interfaces, 2023, 15(3): 3 731⁃3 743. |
20 | KAUSOR M A, CHAKRABORTTY D. Polyaniline (PANi) grafted hierarchical heterostructure nanocomposites for photocatalytic degradation of organic pollutants in waste water: A review [J]. Surfaces and Interfaces, 2022, 31:102079. |
21 | BARBOSA F, GARRUDO F F F, MARQUES A C, et al. Novel electroactive mineralized polyacrylonitrile/PEDOT:PSS electrospun nanofibers for bone repair applications [J]. International Journal of Molecular Sciences, 2023, 24(17):154⁃158. |
22 | CHEN Y⁃C, LIN Y⁃F, LIU C⁃T, et al. Facilitation of osteogenic differentiation of hascs on PEDOT: PSS/mxene composite sponge with electrical stimulation [J]. ACS Applied Polymer Materials, 2023, 5(7): 4 753⁃4 766. |
23 | GUO B, GLAVAS L, A⁃C ALBERTSSON. Biodegradable and electrically conducting polymers for biomedical applications [J]. Progress in Polymer Science, 2013, 38(9): 1 263⁃1 286. |
24 | KAŠPÁRKOVÁ V, HUMPOLÍČEK P, CAPÁKOVÁ Z, et al. Cell⁃compatible conducting polyaniline films prepared in colloidal dispersion mode [J]. Colloids and Surfaces B, 2017, 157: 309⁃316. |
25 | THUAU D, DUCROT P H, POULIN P, et al. Integrated electromechanical transduction schemes for polymer mems sensors [J]. Micromachines (Basel), 2018, 9(5): 197. |
26 | SHIN D M, HONG S W, HWANG Y H. Recent advances in organic piezoelectric biomaterials for energy and biomedical applications [J]. Nanomaterials (Basel), 2020, 10(1): 123⁃138. |
27 | FURUKAWA T. Ferroelectric properties of vinylidene fluoride copolymers [J]. Phase Transitions, 1989, 18(3/4): 143⁃211. |
28 | SZEWCZYK P K, METWALLY S, KARBOWNICZEK J E, et al. Surface⁃potential⁃controlled cell proliferation and collagen mineralization on electrospun polyvinylidene fluoride (PVDF) fiber scaffolds for bone regeneration [J]. ACS Biomaterials Science & Engineering, 2019, 5(2): 582⁃593. |
29 | BARBOSA F, GARRUDO F F F, ALBERTE P S, et al. Hydroxyapatite⁃filled osteoinductive and piezoelectric nanofibers for bone tissue engineering[J]. Science and Technology of Advanced Materials, 2023, 24(1): 2242242. |
30 | BAGHERZADEH E, SHERAFAT Z, ZEBARJAD S M, et al. Stimuli⁃responsive piezoelectricity in electrospun polycaprolactone (PCL)/polyvinylidene fluoride (PVDF) fibrous scaffolds for bone regeneration [J]. Journal of Materials Research and Technology, 2023, 23: 379⁃390. |
31 | MACHTEI E E. The effect of membrane exposure on the outcome of regenerative procedures in humans: A meta⁃analysis [J]. Journal of Periodontology, 2001, 72(4): 512⁃516. |
32 | PAN Q, SHIGERU T, NORIHIRO I. Ferroelectric behavior in poly⁃l⁃lactic acid [J]. Japanese Journal of Applied Physics, 1996, 35(11): 1 442⁃1 445. |
33 | POLAK M, BERNIAK K, SZEWCZYK P K, et al. PLLA scaffolds with controlled surface potential and piezoelectricity for enhancing cell adhesion in tissue engineering [J]. Applied Surface Science, 2023, 621: 156835. |
34 | ZHENG T, YU Y, PANG Y, et al. Improving bone regeneration with composites consisting of piezoelectric poly(l⁃lactide) and piezoelectric calcium/manganese co⁃doped barium titanate nanofibers [J]. Composites Part B⁃Engineering, 2022, 234: 109734. |
35 | MORELLI A, PUPPI D, CHIELLINI F.Polymers from renewable resources [J].Journal of Renewable Materials,2013,1(2):83⁃112. |
36 | FUKADA E, ANDO Y. Piezoelectric properties of poly⁃β⁃hydroxybutyrate and copolymers of β⁃hydroxybutyrate and β⁃hydroxyvalerate [J]. International Journal of Biological Macromolecules, 1986, 8(6): 361⁃366. |
37 | CHERNOZEM R V, SURMENEVA M A, SHKARINA S N, et al. Piezoelectric 3D fibrous poly(3⁃hydroxybutyrate)⁃based scaffolds ultrasound⁃mineralized with calcium carbonate for bone tissue engineering: Inorganic phase formation, osteoblast cell adhesion, and proliferation [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19 522⁃19 533. |
38 | CHERNOZEM R V, SURMENEVA M A, ABALYMOV A A, et al. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small⁃molecule drug delivery, cell response and antibacterial performance [J]. Materials Science and Engineering: C, 2021, 122: 111909. |
39 | ECHAVE M C, SAENZ DEL BURGO L, PEDRAZ J L, et al. Gelatin as biomaterial for tissue engineering [J]. Current Pharmaceutical Design, 2017, 23(24): 3 567⁃3 584. |
40 | FUKADA E. History and recent progress in piezoelectric polymers [J]. IEEE Trans Ultrason Eng 2000, 47(6): 1 277⁃1 290. |
41 | THEOCHARIS A D S, Gialeli S S, Karamanos C, et al. Extracellular matrix structure [J]. Advanced Drug Delivery Reviews, 2016, 97: 4⁃27. |
42 | KNOWLES J C, HASTINGS G W. An intelligent degradable polymer composite which closely matches bone [J]. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 122⁃126. |
43 | FANG W, PING H, LI X, et al. Oriented strontium carbonate nanocrystals within collagen films for flexible piezoelectric sensors [J]. Advanced Functional Materials, 2021, 31(45): 2105806. |
44 | TORGBO S, SUKYAI P. Bacterial cellulose⁃based scaffold materials for bone tissue engineering [J]. Applied Materials Today, 2018, 11: 34⁃49. |
45 | TORGBO S, SUKYAI P. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering [J]. Materials Chemistry and Physics, 2019, 237: 121868. |
46 | KHAN A, KHAN F R, KIM H S. Electro⁃active paper as a flexible mechanical sensor, actuator and energy harvesting transducer: A review [J]. Sensors (Basel), 2018, 18(10): 145⁃147. |
47 | TANDON B, MAGAZ A, BALINT R, et al. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration [J]. Advanced Drug Delivery Reviews, 2018, 129: 148⁃168. |
48 | MASCARENHAS S. Electrets in biophysics [J]. Journal of Electrostatics, 1975, 1(2): 141⁃146. |
49 | WANG Y Y, SUN X D, WANG Q F, et al. In vitro and in vivo evaluation of porous chitosan electret membrane for bone regeneration [J]. Journal of Bioactive and Compatible Polymers, 2018, 33(4): 426⁃438. |
[1] | 秦森, 何和智, 张涛, 黄照夏, 瞿金平. 塑料体积脉动注射成型技术研究[J]. 中国塑料, 2023, 37(9): 96-101. |
[2] | 孙菁, 熊发强, 邓汝辉, 陶雅娴, 陈兴刚. 智能高分子材料在医学监控中的研究进展[J]. 中国塑料, 2023, 37(10): 40-49. |
[3] | 魏辽. 水溶性高分子材料在油气田压裂中的应用研究进展[J]. 中国塑料, 2022, 36(5): 149-157. |
[4] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[5] | 张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165. |
[6] | 臧晓玲, 温变英. 高分子材料绿色制造与可持续发展[J]. 中国塑料, 2021, 35(8): 9-20. |
[7] | 郭金强, 王富玉, 张玉霞. 高阻隔高分子材料研究进展[J]. 中国塑料, 2021, 35(5): 146-155. |
[8] | 徐萌, 高达利, 张师军. 食品包装高分子材料技术进步与升级[J]. 中国塑料, 2021, 35(3): 74-82. |
[9] | 贾园, 张鹏, 刘振, 韩敏. 阻燃高分子材料的开发及其应用研究进展[J]. 中国塑料, 2019, 33(10): 120-127. |
[10] | 马春晖, 戴岳, 张南. 基于文献计量学的高分子材料领域研究现状及热点分析[J]. 中国塑料, 2017, 31(06): 8-15 . |
[11] | 邓亚峰, 郭晓丽. 三维打印快速成型技术在高分子材料加工中的应用[J]. 中国塑料, 2017, 31(05): 6-12 . |
[12] | 鉴冉冉, 杨卫民, 王建, 阎华, 谢鹏程. 聚合物PVT特性在线测试技术及在模具设计中的应用[J]. 中国塑料, 2016, 30(07): 57-61 . |
[13] | 鉴冉冉, 杨卫民, 谢鹏程. 塑料精密注射模塑成型PVT特性测控方法研究[J]. 中国塑料, 2016, 30(02): 94-98 . |
[14] | 胡志海, 刘柏兵, 宋江华, 朱志勇, 邹好号, 江爱华. 大型压制模用高分子粉体履平机的研制[J]. 中国塑料, 2015, 29(06): 107-112. |
[15] | 刘振宇 熊玉竹 梅文杰. 高分子材料银纹研究[J]. 中国塑料, 2013, 27(06): 19-22 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||