
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (9): 112-122.DOI: 10.19491/j.issn.1001-9278.2024.09.019
• 综述 • 上一篇
文麒霖(), 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁(
)
收稿日期:
2024-01-03
出版日期:
2024-09-26
发布日期:
2024-09-27
通讯作者:
陈宁(1979-),男,研究员,博士,研究方向为高分子材料加工新技术,ningchen@scu.edu.cn作者简介:
文麒霖(1993-),男,博士研究生,研究方向为环境友好塑料包装材料,wenqilin125@163.com
基金资助:
WEN Qilin(), JIA Xuehua, SUN Yanjun, NIU Siji, CHEN Yinghong, CHEN Ning(
)
Received:
2024-01-03
Online:
2024-09-26
Published:
2024-09-27
Contact:
CHEN Ning
E-mail:wenqilin125@163.com;ningchen@scu.edu.cn
摘要:
综述了几种典型市售生物可降解塑料聚乳酸(PLA)、聚对二苯甲酸/己二酸丁二醇酯(PBAT)、聚碳酸亚丙酯(PPC)及聚丁二酸丁二醇酯(PBS)的基本性能及其功能改性进展。详细介绍了热塑加工制备生物可降解塑料包装薄膜的常用成型方法,包括吹膜法、流延法、压延法及双向拉伸法;总结了生物可降解塑料薄膜作为绿色包装材料的最新应用进展。
中图分类号:
文麒霖, 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁. 生物可降解塑料包装薄膜的制备及应用进展[J]. 中国塑料, 2024, 38(9): 112-122.
WEN Qilin, JIA Xuehua, SUN Yanjun, NIU Siji, CHEN Yinghong, CHEN Ning. Research progress in preparation and applications of biodegradable plastic packaging films[J]. China Plastics, 2024, 38(9): 112-122.
材料* | 熔融温度/°C | 热变形温度/°C | 玻璃化温度/°C | 结晶度/°C | 拉伸强度/MPa | 断裂伸长率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PLA | 175 | 58 | 60 | 50 | 53 | 6 | [ |
PBAT | 110~115 | - | -30 | 4 | 15 | 760 | [ |
PPC | - | - | 30~41 | - | 2~38 | 8~1 820 | [ |
PBS | 114 | 97 | -35 | 40 | 34 | 560 | [ |
PET | 250 | 98 | 80 | 35 | 71.6 | 70 | [ |
PE⁃HD | 129 | 82 | -120 | 69 | 28 | 700 | [ |
PE⁃LD | 110 | 49 | -120 | 49 | 10 | 300 | [ |
PP | 163 | 110 | -5 | 56 | 33 | 415 | [ |
材料* | 熔融温度/°C | 热变形温度/°C | 玻璃化温度/°C | 结晶度/°C | 拉伸强度/MPa | 断裂伸长率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PLA | 175 | 58 | 60 | 50 | 53 | 6 | [ |
PBAT | 110~115 | - | -30 | 4 | 15 | 760 | [ |
PPC | - | - | 30~41 | - | 2~38 | 8~1 820 | [ |
PBS | 114 | 97 | -35 | 40 | 34 | 560 | [ |
PET | 250 | 98 | 80 | 35 | 71.6 | 70 | [ |
PE⁃HD | 129 | 82 | -120 | 69 | 28 | 700 | [ |
PE⁃LD | 110 | 49 | -120 | 49 | 10 | 300 | [ |
PP | 163 | 110 | -5 | 56 | 33 | 415 | [ |
材料* | 氧气透过率/cm3▪(m2·d·Pa)-1 | 水蒸气透过率/g▪(m2·d)-1 | 参考文献 |
---|---|---|---|
PLA | 550 | 325 | [ |
PBAT | 380 | 880 | [ |
PPC | 10~20 | 40~80 | [ |
PBS | 280 | 450~500 | [ |
BOPET | 60~100 | 100 | [ |
PE⁃HD | 1200 | 20 | [ |
BOPP | 2000 | — | [ |
PE⁃LD/PPC/PE⁃LD | 9.5 | 5.3 | [ |
材料* | 氧气透过率/cm3▪(m2·d·Pa)-1 | 水蒸气透过率/g▪(m2·d)-1 | 参考文献 |
---|---|---|---|
PLA | 550 | 325 | [ |
PBAT | 380 | 880 | [ |
PPC | 10~20 | 40~80 | [ |
PBS | 280 | 450~500 | [ |
BOPET | 60~100 | 100 | [ |
PE⁃HD | 1200 | 20 | [ |
BOPP | 2000 | — | [ |
PE⁃LD/PPC/PE⁃LD | 9.5 | 5.3 | [ |
1 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3 (7): e1700782. |
2 | ROSENBOOM J G, LANGER R, TRAVERSO G. Bioplastics for a circular economy [J]. Nature Reviews Materials, 2022, 7 (2): 117⁃137. |
3 | 联合国环境规划署.2023年世界环境日《塑战速决实践指南》[R].2023.06.05. |
4 | 马占峰, 牛国强, 芦 珊. 中国塑料加工业(2022) [J]. 中国塑料, 2023, 37 (5): 110⁃115. |
MA Z F, NIU G Q, LU S. China plastics industry (2022) [J]. China Plastics, 2023, 37 (5): 110⁃115. | |
5 | MACLEO M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution [J]. Science, 2021, 373 (6550): 61⁃65. |
6 | JACOBSEN L F, PEDERSEN S, THOGERSEN J. Drivers of and barriers to consumers’ plastic packaging waste avoidance and recycling⁃A systematic literature review [J]. Waste Management, 2022, 141: 63–78. |
7 | GUO C Y, GUO H G. Progress in the degradability of biodegradable film materials for packaging [J]. Membranes, 2022, 12 (5): 500. |
8 | SHAO L Y, XI Y W, WENG Y X. Recent advances in PLA⁃based antibacterial food packaging and its applications [J]. Molecules, 2022, 27 (18): 5 953. |
9 | SIDDIQUI S A, SUNDARSINGH A, BAHMID N A, et al. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU [J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22 (5): 4 147⁃4 185. |
10 | 翁云宣, 付 烨. 生物分解塑料与生物基塑料 [M]. 化学工业出版社, 2020. |
11 | DOBRUCKA R. Bioplastic packaging materials in circular economy [J]. LogForum, 2019, 15(1): 129⁃137. |
12 | SID S, MOR R S, KISHORE A, et al. Bio⁃sourced polymers as alternatives to conventional food packaging materials: A review [J]. Trends in Food Science & Technology, 2021, 115: 87⁃104. |
13 | 马志蕊, 尹 甜, 蒋志魁, 等. PBS及其复合膜的制备及应用研究进展 [J]. 中国塑料, 2023, 37 (10): 24⁃33. |
MA Z R, YIN T, JIANG Z K, et al. Research progress in preparation and applications of PBS and its blends [J]. China Plastics, 2023, 37 (10): 24⁃33. | |
14 | 张玉霞. 可生物降解聚合物及其纳米复合材料 [M]. 机械工业出版社, 2017. |
15 | 王献红, 王佛松. 二氧化碳的固定和利用 [M]. 化学工业出版社, 2011. |
16 | YANG F, ZHANG C L, MA Z R, et al. In situ formation of microfibrillar PBAT in PGA films: An effective way to robust barrier and mechanical properties for fully biodegradable packaging films [J]. ACS Omega, 2022, 7 (24): 21 280⁃21 290. |
17 | BANDELLI D, ALEX J, WEBER C, et al. Polyester stereocomplexes beyond PLA: Could synthetic opportunities revolutionize established material blending? [J]. Macromolecular Rapid Communications, 2020, 41 (1): 1900560. |
18 | YU J M, XU S C, LIU B, et al. PLA bioplastic production: From monomer to the polymer [J]. European Polymer Journal, 2023, 193: 112076. |
19 | LI X, YAN X Y, YANG J,et al. Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate⁃co⁃terephthalate) blends and films by reactive extrusion with chain extender [J]. Polymer Engineering and Science, 2018, 58 (10): 1 868⁃1 878. |
20 | HALLORAN M W, DANIELCZAK L, NICELL J A, et al. Highly flexible polylactide food packaging plasticized with nontoxic, biosourced glycerol plasticizers [J]. ACS Applied Polymer Materials, 2022, 4 (5): 3 608⁃3 617. |
21 | NOIVOIL N, YOKSAN R. Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch [J]. Journal of Applied Polymer Science, 2021, 138 (2): e49675. |
22 | TRINH B M, CHANG C C, MEKONNEM T H. Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties [J]. Polymer, 2021, 223: 123679. |
23 | MA F H, WANG B, LENG X F, et al. Biodegradable PBAT/PLA/CaCO3 blowing films with enhanced mechanical and barrier properties: Investigation of size and content of CaCO3 particles [J]. Macromolecular Materials and Engineering, 2022, 307 (9): 2200135. |
24 | SUNWANAMORNLERT P, KERDDONFAG N, SANE A, et al. Poly(lactic acid)/poly(butylene⁃succinate⁃co⁃adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread [J]. Food Packaging and Shelf Life, 2020, 25: 100515. |
25 | AKSHAYKRANTH A, JAYARAMBABU N, TAR T V, et al. Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications [J]. Polymer Bulletin, 2022, 80 (2): 1 369⁃1 384. |
26 | FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate⁃co⁃terephthalate)⁃PBAT based composites [J]. Polymer Engineering and Science, 2019, 50: E7⁃E15. |
27 | SOUSA F M, CAVALCANTI F B, MARINHO V A D, et al. Effect of composition on permeability, mechanical properties and biodegradation of PBAT/PCL blends films [J]. Polymer Bulletin, 2022, 79 (7): 5 327⁃5 338. |
28 | QIU S, ZHOU Y K, WATERHOUSE G I N, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films [J]. Food Chemistry, 2021, 334: 127487. |
29 | JIANG G, LI H L, WANG F. Structure of PBAT/PPC blends prepared by in⁃situ reactive compatibilization and properties of their blowing films [J]. Materials Today Communications, 2021, 27: 102215. |
30 | CHAROENSRI K, RODWIHOK C, KO S H, et al. Enhanced antimicrobial and physical properties of poly (butylene adipate⁃co⁃terephthalate)/zinc oxide/reduced graphene oxide ternary nanocomposite films [J]. Materials Today Communications, 2021, 28:102586. |
31 | DIAO X Q, ZHANG C L, WENG Y X. Properties and degradability of poly(butylene adipate⁃co⁃terephthalate)/calcium carbonate films modified by polyethylene glycol [J]. Polymers, 2022, 14 (3): 484. |
32 | YU S X, WANG H M, XIONG S J, et al. Sustainable wood⁃based poly(butylene adipate⁃co⁃terephthalate) biodegradable composite films reinforced by a rapid homogeneous esterification strategy [J]. ACS Sustainable Chemistry & Engineering. 2022, 10 (44): 14 568–14 578. |
33 | HAO Y, CHU Y C, ZHANG M M, et al. Preparation of functional degradable antibacterial film and application in fresh⁃keeping of grass carp [J]. Journal of Agriculture and Food Research, 2022, 9: 100341. |
34 | XIAO L Q, ZHANG X J, FU Q L, et al. One step to simultaneously improve the antibacterial activity and compatibility with PBAT of nanolignin via surface modification [J]. ACS Sustainable Chemistry & Engineering, 2023, 11 (40): 14 773⁃14 781. |
35 | MBABAZI B, WENDT O F, NYANZI S A, et al. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts [J]. Results in Chemistry, 2022,4: 100542. |
36 | NÖRNBERG B, BORCHARDT E, LUINSTRA G A, et al. Wood plastic composites from poly(propylene carbonate) and poplar wood flour ⁃ Mechanical, thermal and morphological properties [J]. European Polymer Journal,2014, 51: 167⁃176. |
37 | JIANG G, YU L, ZHANG M D, et al. Poly(propylene carbonate)/poly(3⁃hydroxybutyrate)⁃based bionanocomposites reinforced with cellulose nanocrystal for potential application as a packaging material [J]. Polymers for Advanced Technologies, 2020, 31 (4): 853⁃863. |
38 | LI G F, LUO W H, XIAO M, et al. Biodegradable poly(propylene carbonate)/layered double hydroxide composite films with enhanced gas barrier and mechanical properties [J]. Chinese Journal of Polymer Science, 2016, 34 (1): 13⁃22. |
39 | WU W, LIU T, DENG X Q, et al. Ecofriendly UV⁃protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin [J]. International Journal of Biological Macromolecules, 2019, 126: 1 030⁃1 036. |
40 | BAHRAMIAN B, CHRZANOWSKI W, KONDYURIN A, et al. Fabrication of antimicrobial poly(propylene carbonate) film by plasma surface modification [J]. Industrial & Engineering Chemistry Research. 2017, 56 (44): 12 578⁃12 587. |
41 | JI G Y, ZHANG X H, WANG W, et al. Engineering tannic acid with tailored structure into poly(propylene carbonate) towards supramechanical performance and multi⁃functions [J]. Polymer, 2023, 282: 126187. |
42 | TRAN T N, LIM K T, FIORENTINI F, et al. Antioxidant and biocompatible CO2⁃based biocomposites from vegetable wastes for active food packaging [J]. Advanced Sustainable Systems, 2022, 6 (6): 2100470. |
43 | BARLETTA M, AVERSA C, AYYOOB M, et al. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications [J]. Progress in Polymer Science, 2022, 132: 101579. |
44 | GAROFALO E, DI MAIO L, SCARFATO P, et al. Selective localization of nanoparticles to enhance the properties of PBS/PLA nanocomposite blown films [J]. Journal of Polymers and the Environment, 2023, 31 (10): 4 546⁃4 558. |
45 | COSTA A R D, CROCITTI A, DE CARVALHO L H, et al. Properties of biodegradable films based on poly(butylene Succinate) (PBS) and poly(butylene adipate⁃co⁃terephthalate) (PBAT) blends [J]. Polymers, 2020, 12 (10): 2 317. |
46 | ONO H, KAWAI Y, ATA S, et al. Synthesis of multiblock copolymer composed of biodegradable poly(butylene succinate) and poly(2⁃pyrrolidone): Impact of each block length on the mechanical properties [J]. Macromolecular Rapid Communications, 2023, 44 (15): 2200135. |
47 | BELUCI N D C L, DOS SANTOS J, DE CARVATHO F A, et al. Reactive biodegradable extruded blends of thermoplastic starch and polyesters [J]. Carbohydrate Polymer Technologies and Applications, 2023, 5: 100274. |
48 | HOU H B, PU Z J, WANG X, et al. Effect of surface modification of SiO2 particles on the interfacial and mechanical properties of PBS composites [J]. Polymer Composites, 2020, 43 (8): 5 087⁃5 094. |
49 | XU J W, MANEPALLI P H, ZHU L J, et al. Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion [J]. Journal of Polymer Research, 2019, 26 (8): 188. |
50 | ŁOPUSIEWICZ Ł, ZDANOWICZ M, MACIEJA S, et al. Development and characterization of bioactive poly(butylene⁃succinate) films modified with quercetin for food packaging applications [J]. Polymers, 2021, 13 (11): 1 798. |
51 | BASBASAN A J, HARARAK B, WINOTAPUN C, et al. Lignin nanoparticles for enhancing physicochemical and antimicrobial properties of polybutylene succinate/thymol composite film for active packaging [J]. Polymers, 2023, 15 (4): 989. |
52 | WATTANAWONG N, AHT⁃ONG D. Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films [J]. Polymer Degradation and Stability, 2021, 183: 109459. |
53 | JIANG G, YU L. High strength and barrier properties of biodegradable PPC/PBSA blends prepared by reaction compatibilization for promising application in packaging [J]. Macromolecular Materials and Engineering, 2021, 306 (7): 2000723. |
54 | KHARRAT F, KHLIF M, HILLIOU L, et al. Minimally processed date palm (Phoenix dactylifera L.) leaves as natural fillers and processing aids in poly(lactic acid) composites designed for the extrusion film blowing of thin packages [J]. Industrial Crops & Products, 2020, 154: 112637. |
55 | PIETROSANTO A, SCARFATO P, DI MAIO L, et al. Effect of cooling air in the film blowing process on the properties of PLA/PBAT films [J]. Macromolecular Symposia, 2022, 405 (1): 2100251. |
56 | PAL A K, WU F, MISRA M, et al. Reactive extrusion of sustainable PHBV/PBAT⁃based nanocomposite films with organically modified nanoclay for packaging applications: Compression moulding vs. cast film extrusion [J]. Composites Part B⁃Engineering, 2020, 198: 108141. |
57 | WANG K J, JIAO T G, WANG Y M, et al. The microstructures of extrusion cast biodegradable poly(butylene succinate) films investigated by X⁃ray diffraction [J]. Materials Letters, 2013, 92: 334⁃337. |
58 | MESSIN T, FOLLAIN N, GUINAULT A, et al. Structure and barrier properties of multinanolayered biodegradable PLA/PBSA films: Confinement effect via forced assembly coextrusion [J]. ACS Applied of Materials & Interfaces, 2017, 9 (34): 29 101⁃29 112. |
59 | KAREVAN M. Hybrid micro‑composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method [J]. Journal of Polymer Research, 2022, 29 (9): 395. |
60 | SINGH S, PATEL M K, GENG S Y, et al. Orientation of polylactic acid⁃chitin nanocomposite films via combined calendering and uniaxial drawing: Effect on structure, mechanical, and thermal properties [J]. Nanomaterials, 2021, 11 (12): 3 308. |
61 | CHARLON S, MARAIS S, DARGENT R, et al. Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)⁃co⁃(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction [J]. Physical Chemistry Chemical Physics, 2015, 17 (44): 29918. |
62 | KATANYOOTA P, JARIYASAKOOLROJ P, SANE A. Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate⁃co⁃terephthalate) films [J]. Polymer Bulletin, 2023, 80 (5): 5 219⁃5 237. |
63 | NIU D Y, XU P W, LIU B, et al. Toward high strength, ductility, and barrier performance for poly(glycolic acid)/poly(butylene adipate⁃co⁃terephthalate) green films through reactive compatibilization and biaxial drawing [J]. Macromolecules, 2023, 56 (20): 8 236⁃8 246. |
64 | WANG X G, LI X, CUI L N, et al. Improvement of gas barrier properties for biodegradable poly(butylene adipate⁃co⁃terephthalate) nanocomposites with MXene nanosheets via biaxial stretching[J]. Polymers, 2022, 14 (3): 480. |
65 | PAL A K, MISRA M, MOHANTY A K. Silane treated starch dispersed PBAT/PHBV⁃based composites: Improved barrier performance for single⁃use plastic alternatives [J]. International Journal of Biological Macromolecules, 2023, 229: 1 009⁃1 022. |
66 | PARLAK M E, UZUNER K, KIRAC F T, et al. Production and characterization of biodegradable bi⁃layer films from poly (lactic) acid and zein [J]. International Journal of Biological Macromolecules, 2023, 227: 1 027⁃1 037. |
67 | JIANG G, ZHANG M D, FENG J, et al. High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrytals [J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11 246⁃11 254. |
68 | MANGARAJ S, THAKUR R R, YADAV A. Development and characterization of PLA and Cassava starch⁃based novel biodegradable film used for food packaging application [J]. Journal of Food Processing and Preservation, 2022, 46 (9): e16314. |
69 | ZHENG Y L, JIA X Y, ZHAO Z Y, et al. Innovative natural antimicrobial natamycin incorporated titanium dioxide (nano⁃TiO2)/poly (butylene adipate⁃co⁃terephthalate) (PBAT)/poly (lactic acid) (PLA) biodegradable active film (NTP@PLA) and application in grape preservation [J]. Food Chemistry, 2023, 400: 134100. |
70 | PARK J J, CHOI Y H, SIM E J, et al. Biodegradable poly(3⁃hydroxybutyrate⁃co⁃4⁃hydroxybutyrate) films coated with tannic acid as an active food packaging material [J]. Food Packaging and Shelf Life, 2023, 35: 101009. |
71 | YUSOF N L, MUTALIB N A A, NAZATUL U K, et al. Efficacy of biopolymer/starch based antimicrobial packaging for chicken breast fillets [J]. Foods, 2021, 10 (10): 2 379. |
72 | LAORENZA Y, HARNKARNSUJARIT N. Ginger oil and lime peel oil loaded PBAT/PLA via cast⁃extrusion as shrimp active packaging: Microbial and melanosis inhibition [J]. Food Packaging and Shelf Life, 2023, 38: 101116. |
73 | DEVI M P I, NALLAMUTHU N, RAJINI N, et al. Biodegradable poly(propylene) carbonate using in⁃situ generated CuNPs coated Tamarindus indica filler for biomedical applications [J]. Materials Today Communications, 2019,19: 106⁃113. |
74 | CAPPIELLO G, AVERSA C, BARLETTA M, et al. Progress in design and processing of polyhydroxyalkanoates (PHAs): Home compostable poly(3⁃hydroxybutyrate⁃co-3⁃hydroxyhexanoate) (PHBHHx)/polybutylene succinate⁃co⁃adipate (PBSA) blend [J]. Journal of Applied Polymer Science, 2023, 140 (23): e53933. |
75 | LIN H, CHEN Y, GAO X R, et al. Transparent, heat⁃resistant, ductile, and self⁃reinforced polylactide through simultaneous formation of nanocrystals and an oriented amorphous phase [J]. Macromolecules, 2023, 56 (6): 2 454⁃2 464. |
76 | ZHANG X, LIU W F, YANG D J, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV⁃blocking performance [J]. Advanced Functional Materials, 2019, 29 (4): 1806912. |
77 | ZHENG H, TANG H B, YANG C X, et al. Evaluation of the slow⁃release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets [J]. Food Chemistry, 2022, 385: 132693. |
78 | BOTTA L, TITONE V, TERESI R, et al. Biocomposite PBAT/lignin blown films with enhanced photo⁃stability [J]. International Journal of Biological Macromolecules, 2022, 217: 161⁃170. |
79 | VIEIRA L D S, MONTAGNA L S, MARINI J, et al. Influence of particle size and glassy carbon content on the thermal, mechanical, and electrical properties of PHBV/glassy carbon composites [J]. Journal of Applied Polymer Science, 2021, 138 (4): e49740. |
[1] | 李向阳, 杨林柱, 翟国强, 高婉琴, 王克智, 李训刚. 成核剂对聚丁二酸丁二醇酯结晶与性能的影响[J]. 中国塑料, 2021, 35(8): 146-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||