京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (3): 110-119.DOI: 10.19491/j.issn.1001-9278.2022.03.018
• Plastic and Environment • Previous Articles Next Articles
LI Jinglin1, ZHENG Yi2, ZHAO Liya2, WANG Pan2(), YANG Xinyu2, REN Lianhai2(
)
Received:
2021-11-01
Online:
2022-03-26
Published:
2022-03-25
CLC Number:
LI Jinglin, ZHENG Yi, ZHAO Liya, WANG Pan, YANG Xinyu, REN Lianhai. Research progress in biosynthesis of polyhydroxyalkanoates from kitchen waste[J]. China Plastics, 2022, 36(3): 110-119.
应用行业 | 具体应用 | 参考文献 |
---|---|---|
工业 | 生活用品包装;化妆品容器;食品包装 | [ |
药物 | 蛋白固定载体;药物靶向传递;促进细胞增殖 | [ |
农业 | 农用地膜;农药、化肥载体 | [ |
环保 | 复合纳米材料;微生物外源营养物质;污水中有机物吸附剂;提升燃料热值 | [ |
养殖业 | 饲料添加剂;控制水体病原菌 | [ |
医疗 | 皮肤缝合替代品;抗菌材料;植入材料(血管支架、软骨组织、神经导管) | [ |
应用行业 | 具体应用 | 参考文献 |
---|---|---|
工业 | 生活用品包装;化妆品容器;食品包装 | [ |
药物 | 蛋白固定载体;药物靶向传递;促进细胞增殖 | [ |
农业 | 农用地膜;农药、化肥载体 | [ |
环保 | 复合纳米材料;微生物外源营养物质;污水中有机物吸附剂;提升燃料热值 | [ |
养殖业 | 饲料添加剂;控制水体病原菌 | [ |
医疗 | 皮肤缝合替代品;抗菌材料;植入材料(血管支架、软骨组织、神经导管) | [ |
处理方法 | 目的 | 优势 | 劣势 | 参考文献 |
---|---|---|---|---|
机械预处理 | 以减小底物的尺寸和聚合度;提供更大的比表面积 | 有机质易被微生物利用 | 对合成物产量提升不明显 | [ |
热预处理 | 改变反应物物理化学性质;破坏细胞壁和细胞膜的化学键;增加溶解度和脱水性; | 缩短厌氧反应时间 | 易形成类黑精类物质 | [ |
酸/碱预处理 | 酸改变纤维素和木质素结构;碱增加了蛋白质水解;碱使反应物膨胀,增大比表面积 | 抑制副产物产生 | 经济性低;过度降解导致可发酵糖损失 | [ |
臭氧预处理 | 臭氧自由基与有机底物发生反应;间接产生OH-使有机化合物降解 | 消除病原体 | 发酵糖的损失较高 | [ |
酶预处理 | 降解纤维素和促进半纤维素溶解的能力;增强水解活性提高可溶性碳水化合物糖 | 不需要额外的能量 不需要化学添加剂 | 处理成本较高;处理条件严格;处理动力学差 | [ |
超声预处理 | 产生OH-破坏细胞壁使有机物释放;释放细菌产生的酶 | 反应效率高 | 能耗高 | [ |
微波预处理 | 影响可溶性和悬浮组分的各种尺寸的质量分数的分布,大分子链的极化导致氢键断裂 | 无能量传输热量损失;环保和节能特性 | 易形成类黑精类物质 | [ |
预发酵处理 | 促进碳水化合物和蛋白质水解;有机质转化为乳酸进而合成VFAs | 利用底物现存微生物;能耗处理成本低 | 处理效率低于热处理 | [ |
处理方法 | 目的 | 优势 | 劣势 | 参考文献 |
---|---|---|---|---|
机械预处理 | 以减小底物的尺寸和聚合度;提供更大的比表面积 | 有机质易被微生物利用 | 对合成物产量提升不明显 | [ |
热预处理 | 改变反应物物理化学性质;破坏细胞壁和细胞膜的化学键;增加溶解度和脱水性; | 缩短厌氧反应时间 | 易形成类黑精类物质 | [ |
酸/碱预处理 | 酸改变纤维素和木质素结构;碱增加了蛋白质水解;碱使反应物膨胀,增大比表面积 | 抑制副产物产生 | 经济性低;过度降解导致可发酵糖损失 | [ |
臭氧预处理 | 臭氧自由基与有机底物发生反应;间接产生OH-使有机化合物降解 | 消除病原体 | 发酵糖的损失较高 | [ |
酶预处理 | 降解纤维素和促进半纤维素溶解的能力;增强水解活性提高可溶性碳水化合物糖 | 不需要额外的能量 不需要化学添加剂 | 处理成本较高;处理条件严格;处理动力学差 | [ |
超声预处理 | 产生OH-破坏细胞壁使有机物释放;释放细菌产生的酶 | 反应效率高 | 能耗高 | [ |
微波预处理 | 影响可溶性和悬浮组分的各种尺寸的质量分数的分布,大分子链的极化导致氢键断裂 | 无能量传输热量损失;环保和节能特性 | 易形成类黑精类物质 | [ |
预发酵处理 | 促进碳水化合物和蛋白质水解;有机质转化为乳酸进而合成VFAs | 利用底物现存微生物;能耗处理成本低 | 处理效率低于热处理 | [ |
1 | HOTTLE T A, BILEC M M, LANDIS A E. Sustainabi⁃lity assessments of bio⁃based polymers[J].Polym Degradation Stab, 2013, 98 (9): 1 898⁃1 907. |
2 | 尹芬, 马晓军. 木质纤维素材料合成PHA预处理技术的研究进展[J].包装工程, 2020, 41 (9): 100⁃108. |
YI F, MA X J. Research progress of pretreatment technology for synthesis of PHA from lignocellulosic materials[J]. Packaging Engineering, 2020, 41 (9): 100⁃108. | |
3 | CHOI S Y, CHO I J, LEE Y, et al. Microbial polyhydroxyalkanoates and nonnatural polyesters[J].Adv Mater, 2020, 32 (35): 1907138. |
4 | 赵国强, 李亚丽, 武双, 等. 基于低成本碳源微生物合成聚羟基脂肪酸酯的研究进展[J].高分子通报, 2020 (11): 22⁃30. |
ZHAO G Q, LI Y L, WU S,et al. Research progress in polyhydroxyalkanoates biosynthesis by microorganisms based on inexpensive carbon sources[J]. Polymer Bulletin, 2020 (11): 22⁃30. | |
5 | 冉淦侨, 谭丹, 卢晓云. 聚羟基脂肪酸酯纳米微球:结构特征、生物合成及其在生物技术和生物医药领域的应用[J].中国生物化学与分子生物学报, 2016, 32 (7): 745⁃754. |
RAN J Q, TAN D, LU X Y. Polyhydroxyalkanoate nanoparticles:structure,biosynthesis,and applications in biotechnology and biomedicine[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32 (7): 745⁃754. | |
6 | THORAT GADGIL B S, KILLI N, RATHNA G V N. Polyhydroxyalkanoates as biomaterials[J].Medchemcomm, 2017, 8 (9): 1 774⁃1 787. |
7 | 陈歌, 许春丽, 徐博, 等. 聚羟基脂肪酸酯作为农药载体的研究进展[J].农药学学报, 2019, 21 (S1): 871⁃882. |
CHEN G, XU C L, XU B,et al. Research progress of polyhydroxyalkylates as pesticide carriers[J]. Chinese Journal of Pesticide Science, 2019, 21 (S1): 871⁃882. | |
8 | 陈国强. 微生物聚羟基脂肪酸酯的应用新进展[J].中国材料进展, 2012, 31 (2): 7⁃15. |
CHNE G Q. Recent progress in application of microbial polyhydroxyalkanoates[J]. Materials China, 2012, 31 (2): 7⁃15. | |
9 | 段亚飞, 张月, 张家松, 等. 聚β⁃羟基丁酸酯及在水产动物中应用研究进展[J].海洋湖沼通报, 2017 (1): 57⁃62. |
DUAN Y F, ZHANG Y, ZHANG J S,et al. Advances in the application of poly⁃β⁃hydroxybutyrate(PHB)in aquatic animals[J]. Transactions of Oceanology and Limnology, 2017 (1): 57⁃62. | |
10 | GANESH SARATALE R, CHO S⁃K, DATTATRAYA SARATALE G, et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams[J].Bioresour Technol, 2021, 325: 124685. |
11 | RAZA Z A, ABID S, BANAT I M. Polyhydroxyalkanoates: characteristics, production, recent developments and applications[J].Int Biodeterior Biodegrad, 2018, 126: 45⁃56. |
12 | 庄倩倩. 大肠杆菌利用合成生物学策略生产聚羟基脂肪酸酯的研究进展[J].生物加工过程, 2017, 15 (6): 38⁃43. |
ZHUANG Q Q. Progress in synthetic biology of escherichia coli to produce polyhydroxyalkanoates[J]. Escherichia coli synthetic biology polyhydroxyalkanoates, 2017, 15 (6): 38⁃43. | |
13 | 卞士祥, 王闻, 周桂雄, 等. 生物合成聚羟基脂肪酸酯(PHA)的研究进展[J].新能源进展, 2016, 4 (6): 436⁃442. |
BIAN S X, WANG W, ZHOU G X,et al. Research and development on the biosynthesis of polyhydroxyalkanoate(PHA) [J]. Advances in New and Renewable Energy, 2016, 4 (6): 436⁃442. | |
14 | AHN J, JHO E H, NAM K. Effect of acid⁃digested rice straw waste feeding methods on the 3HV fraction of bacterial poly(3⁃hydroxybutyrate⁃co⁃3⁃hydroxyvalerate) production[J].Process Biochem, 2016, 51 (12): 2 119⁃2 126. |
15 | 郭子瑞, 黄龙, 陈志强, 等. 活性污泥合成聚羟基脂肪酸酯工艺过程研究进展[J].哈尔滨工业大学学报, 2016, 48 (2): 1⁃8. |
GUO Z R, HUANG L, CHEN Z Q,et al. Advances in polyhydroxyalkanoates synthesis by activated sludge[J]. Journal of Harbin Institute of Technology, 2016, 48(2): 1⁃8. | |
16 | 魏继华, 刘越, 李佳益, 等. 中短链聚羟基脂肪酸酯的低成本生产与应用[J].江苏农业科学, 2019, 47 (16): 39⁃45. |
WEI J H, LIU Y, LI J Y,et al. Low⁃cost production and application of middle and short chain polyhydroxyalkanoates[J]. Jiangsu Agricultural Sciences, 2019, 47 (16): 39⁃45. | |
17 | 邱石正, 李佳益, 杨景辰, 等. 低成本合成聚羟基脂肪酸酯(PHAs)的研究进展[J].生物技术通报, 2019, 35 (9): 45⁃52. |
QIU S Z, LI J Y, YANG J C,et al. Research progress of low⁃cost method of synthetizing polyhydroxyalkanoates(PHAs) [J]. Biotechnology Bulletin, 2019, 35 (9): 45⁃52. | |
18 | NIELSEN C, RAHMAN A, REHMAN A U, et al. Food waste conversion to microbial polyhydroxyalkanoates[J].Microb Biotechnol, 2017, 10 (6): 1 338⁃1 352. |
19 | 董锦云, 方芳, 张佳玲, 等. 厌氧发酵液中溶解性有机物对活性污泥合成聚羟基脂肪酸酯影响的研究进展[J].生物工程学报, 2021, 37 (1): 149⁃162. |
DONG J Y, FANG F, ZHANG J L,et al. A review on polyhydroxyalkanoates synthesis in activated sludge system: the effects of dissolved organic compounds by using anaerobic fermentation liquid from waste activated sludge[J]. Chinese Journal of Biotechnology, 2021, 37 (1): 149⁃162. | |
20 | JIANG J, LI L, CUI M, et al. Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature[J].Biochem Eng J, 2018, 135: 91⁃97. |
21 | LUO K, PANG Y, YANG Q, et al. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications[J].Environ Sci Pollut Res Int, 2019, 26 (14): 13 984⁃13 998. |
22 | 高鹏, 张栋, 贾舒婷,等. 污水厂污泥厌氧消化产短链脂肪酸研究进展[J].化工进展, 2013, 32 (9): 2 227⁃2 232. |
GAO P, ZHAVG D, JIA S T, et al. Research on bio-production of short-chain fatty acids from excess sludge during anaerobic digestion[J].Chemical Industry and Engineering Progress, 2013, 32 (9): 2 227⁃2 232. | |
23 | 姜鹏, 曾小伦, 邹嘉豪, 等. 产聚羟基脂肪酸酯的活性污泥驯化及细菌群落结构研究[J].环境科学与技术, 2020, 43 (10): 85⁃89. |
JIANG P, ZENG X L, ZOU J H,et al. Enrichment of polyhydroxyalkanoate⁃accumulating microorganisms in activated sludge and analysis of bacterial community structure[J]. Environmental Science and Technology, 2020, 43 (10): 85⁃89. | |
24 | JIA Q, WANG H, WANG X. Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge fermentation liquid[J].Bioresour Technol, 2013, 140: 328⁃336. |
25 | LIAO Q, GUO L, RAN Y, et al. Optimization of polyhydroxyalkanoates (PHA) synthesis with heat pretreated waste sludge[J].Waste Manag, 2018, 82: 15⁃25. |
26 | CHEN Z, GUO Z, WEN Q, et al. A new method for polyhydroxyalkanoate (PHA) accumulating bacteria selection under physical selective pressure[J].Int J Biol Macromol, 2015, 72: 1 329⁃1 334. |
27 | 孟栋, 李枘枘, 刘玉玲, 等. 利用剩余活性污泥合成聚羟基脂肪酸酯的研究进展[J].生物工程学报, 2019, 35 (11): 2 165⁃2 176. |
MENG D, L R R, LIU Y L,et al. Advances in synthesis of polyhydroxyalkanoates by using residual activated sludge[J]. Chinese Journal of Biotechnology, 2019, 35 (11): 2 165⁃2 176. | |
28 | KAUR G. Strategies for large⁃scale production of polyhydroxyalkanoates[J].Chemical and Biochemical Enginee⁃ring Quarterly, 2015, 29 (2): 157⁃172. |
29 | KOLLER M, BRAUNEGG G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production[J].Bioengineering (Basel), 2015, 2 (2): 94⁃121. |
30 | BHALERAO A, BANERJEE R, NOGUEIRA R. Continuous cultivation strategy for yeast industrial wastewater⁃based polyhydroxyalkanoate production[J].Journal of Bioscience and Bioengineering, 2020, 129 (5): 595⁃602. |
31 | TAN D, XUE Y S, AIBAIDULA G, et al. Unsterile and continuous production of polyhydroxybutyrate by halomonas Td01[J].Bioresource Technology, 2011, 102 (17): 8 130⁃8 136. |
32 | KUMAR B, HUANG H, DAI J, et al. Impact of low⁃thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion[J].Bioresour Technol, 2020, 297: 122423. |
33 | STRAZZERA G, BATTISTA F, GARCIA N H, et al. Volatile fatty acids production from food wastes for biorefinery platforms: a review[J].J Environ Manage, 2018, 226: 278⁃288. |
34 | YIN J, WANG K, YANG Y, et al. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment[J].Bioresour Technol, 2014, 171: 323⁃329. |
35 | LIU Y, LI X, KANG X. Effect of volume ratio on anaerobic co⁃digestion of thermal hydrolysis of food waste with activated sludge[J].Int Biodeterior Biodegrad, 2015, 102: 154⁃158. |
36 | ZOU X, YANG R, ZHOU X,et al. Effects of mixed alkali⁃thermal pretreatment on anaerobic digestion performance of waste activated sludge[J].J Clean Prod, 2020, 259: 120940. |
37 | PAUDEL S R, BANJARA S P, CHOI O K, et al. Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges[J].Bioresour Technol, 2017, 245: 1 194⁃1 205. |
38 | BRAGUGLIA C M, GALLIPOLI A, GIANICO A, et al. Anaerobic bioconversion of food waste into energy: a critical review[J].Bioresour Technol, 2018, 248: 37⁃56. |
39 | LI Y, JIN Y. Effects of thermal pretreatment on acidification phase during two⁃phase batch anaerobic digestion of kitchen waste[J].Renew Energ, 2015, 77: 550⁃557. |
40 | PASSOS F, ORTEGA V, DONOSO⁃BRAVO A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation[J].Bioresour Technol, 2017, 227: 239⁃246. |
41 | ARIUNBAATAR J, PANICO A, ESPOSITO G, et al. Pretreatment methods to enhance anaerobic digestion of organic solid waste[J].Applied Energy, 2014, 123: 143⁃156. |
42 | ARIUNBAATAR J, PANICO A, FRUNZO L, et al. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods[J].J Environ Manage, 2014, 146: 142⁃149. |
43 | BATTISTA F, BOLZONELLA D. Some critical aspects of the enzymatic hydrolysis at high dry⁃matter content: a review[J].Biofuels, Bioproducts and Biorefining, 2018, 12 (4): 711⁃723. |
44 | UÇKUN KIRAN E, TRZCINSKI A P, LIU Y. Enhan⁃cing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment[J].Bioresour Technol, 2015, 183: 47⁃52. |
45 | LIANG T, ELMAADAWY K, LIU B, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances[J].Process Saf Environ Prot, 2021, 145: 321⁃339. |
46 | SHAHRIARI H, WARITH M, HAMODA M, et al. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment[J].J Environ Manage, 2013, 125: 74⁃84. |
47 | YU X, YIN J, WANG K, et al. Enhancing food waste hydrolysis and the production rate of volatile fatty acids by prefermentation and hydrothermal pretreatments[J].Energy & Fuels, 2016, 30 (5): 4 002⁃4 008. |
48 | JIANG J, ZHANG Y, LI K, et al. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate[J].Bioresour Technol, 2013, 143: 525⁃530. |
49 | WANG K, YIN J, SHEN D, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH[J].Bioresour Technol, 2014, 161: 395⁃401. |
50 | KHATAMI K, ATASOY M, LUDTKE M, et al. Bioconversion of food waste to volatile fatty acids: impact of microbial community, pH and retention time[J].Chemosphere, 2021, 275: 129981. |
51 | DAHIYA S, SARKAR O, SWAMY Y V, et al. Acidogenic fermentation of food waste for volatile fatty acid production with co⁃generation of biohydrogen[J].Bioresour Technol, 2015, 182: 103⁃113. |
52 | 赵宋敏, 李定龙, 戴肖云,等. 温度对厨余垃圾厌氧发酵产酸的影响[J].环境污染与防治, 2011, 33 (3): 44⁃47,64. |
ZHAO S M, LI D L, DAI X Y,et al. The influence of temperature on acid production during anaerobic fermentation of kitchen garbage[J]. Environmental Pollution & Control, 2011, 33 (3): 44⁃47,64. | |
53 | CHEN H, WU H Y. Optimization of volatile fatty acid production with co⁃substrate of food wastes and dewatered excess sludge using response surface methodology[J].Bioresour Technol, 2010, 101 (14): 5 487⁃5 493. |
54 | 李龚. 利用菜场和厨余垃圾厌氧发酵产酸研究[D]. 合肥:合肥工业大学,2015. |
55 | YUAN Y, HU X, CHEN H, et al. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge[J].Sci Total Environ, 2019, 694: 133741. |
56 | 刘和, 刘晓玲, 邱坚, 等. C/N对污泥厌氧发酵产酸类型及代谢途径的影响[J].环境科学学报, 2010, 30 (2): 340⁃346. |
LIU H, LIU X L, QIU J,et al. The effects of C/N ratio on the production of volatile fatty acids and the metabolic pathway of anaerobic fermentation of sewage sludge[J]. Acta Scientiae Circumstantiae, 2010, 30 (2): 340⁃346. | |
57 | 李灿, 方茜, 魏春海, 等. 不同C/N下花生粕与果蔬皮联合厌氧发酵产酸效率研究[J].应用化工, 2020, 49 (4): 854⁃858. |
LI C, FANG Q, WEI C H,et al. Study on the acidogenic efficiency of combined anaerobic fermentation of peanut meal and fruit/vegetable peel under different C/N conditions[J]. Applied Chemical Industry, 2020, 49 (4): 854⁃858. | |
58 | GOMEZ⁃ROMERO J, GONZALEZ⁃GARCIA A, CHAIREZ I, et al. Selective adaptation of an anaerobic microbial community: biohydrogen production by co⁃digestion of cheese whey and vegetables fruit waste[J].Int J Hydrogen Energy, 2014, 39 (24): 12 541⁃12 550. |
59 | REDDY M V, MOHAN S V. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia[J].Bioresour Technol, 2012, 103 (1): 313⁃321. |
60 | KOURMENTZA C, KORNAROS M. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source[J].Bioresour Technol, 2016, 222: 388⁃398. |
61 | HAO J, WANG X, WANG H. Overall process of using a valerate⁃dominant sludge hydrolysate to produce high⁃quality polyhydroxyalkanoates (PHA) in a mixed culture[J].Sci Rep, 2017, 7 (1): 6939. |
62 | JIANG Y, HEBLY M, KLEEREBEZEM R, et al. Me⁃tabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production[J].Water Res, 2011, 45 (3): 1 309⁃1 321. |
63 | FRADINHO J C, OEHMEN A, REIS M A M. Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co⁃substrate uptake[J].J Biotechnol, 2014, 185: 19⁃27. |
64 | WANG X, BENGTSSON S, OEHMEN A, et al. Application of dissolved oxygen (DO) level control for polyhydroxyalkanoate (PHA) accumulation with concurrent nitrification in surplus municipal activated sludge[J].N Biotechnol, 2019, 50: 37⁃43. |
65 | WANG X, OEHMEN A, FREITAS E B, et al. The link of feast⁃phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production[J].Water Res, 2017, 112: 269⁃278. |
66 | WIJEYEKOON S, CARERE C R, WEST M, et al. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors[J].Water Res, 2018, 140: 1⁃11. |
67 | AHN J, JHO E H, NAM K. Effect of C/N ratio on polyhydroxyalkanoates (PHA) accumulation by cupriavidus necator and its implication on the use of rice straw hydrolysates[J].Environmental Engineering Research, 2015, 20 (3): 246⁃253. |
68 | WEN Q, CHEN Z, TIAN T, et al. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge[J].Journal of Environmental Sciences, 2010, 22 (10): 1 602⁃1 607. |
69 | JIA Q, XIONG H, WANG H, et al. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales[J].Bioresour Technol, 2014, 171: 159⁃167. |
70 | DE GRAZIA G, QUADRI L, MAJONE M, et al. Influence of temperature on mixed microbial culture polyhydroxyalkanoate production while treating a starch industry wastewater[J].J Environ Chem Eng, 2017, 5 (5): 5 067⁃5 075. |
71 | VALENTINO F, LORINI L, GOTTARDO M, et al. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates[J].J Biotechnol, 2020, 323: 54⁃61. |
72 | LI D, YIN F, MA X. Towards biodegradable polyhydroxyalkanoate production from wood waste: Using volatile fatty acids as conversion medium[J].Bioresour Technol, 2020, 299: 122629. |
73 | VILLANO M, BECCARI M, DIONISI D, et al. Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding[J].Process Biochem, 2010, 45 (5): 714⁃723. |
74 | MORGAN⁃SAGASTUME F, KARLSSON A, JOHANSSON P, et al. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus[J].Water Res, 2010, 44 (18): 5 196⁃5 211. |
75 | PALMEIRO⁃SANCHEZ T, FRA⁃VAZQUEZ A, REY⁃MARTINEZ N, et al. Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture[J].J Hazard Mater, 2016, 306: 332⁃339. |
[1] | WU Xiongjie, TAO Qiang, ZHU Dongbo, CHENG Jinsong, CHU Yu, XU Lei. Study on material identification and total migration of biodegradable plastic shopping bags used for food contact [J]. China Plastics, 2022, 36(5): 127-132. |
[2] | LI Xiangyang, YANG Linzhu, ZHAI Guoqiang, GAO Wanqin, WANG Kezhi, LI Xungang. Effect of Nucleating Agent on Crystallization and Properties of Poly(butylene succinate) [J]. China Plastics, 2021, 35(8): 146-151. |
[3] | DIAO Xiaoqian, WENG Yunxuan, FU Ye, ZHOU Yingxin. Review of Applications and Performance Evaluation Methods of Biodegradable Plastics [J]. China Plastics, 2021, 35(8): 152-161. |
[4] | FENG Yuhong, YAO Wenqing, SHANG Chaonan, XIE Yanli, ZHANG Mingnan, ZHOU Xueqing, WANG Guizhen, YU Wenhui, DOU Zhifeng. Research Progress in Laws and Inspection Standards of Disposable Plastic Wastes Control [J]. China Plastics, 2021, 35(8): 55-63. |
[5] | LI Yuzhu, YAO Lihui, YE Shiqiang, LYU Guoyong, LIU Panpan, XU Longfei, QIU Dan. Research Progress on Degradation Performance of Biodegradable Materials in Water Environment [J]. China Plastics, 2021, 35(7): 103-114. |
[6] | . Advances in Research of Plant Fiber Reinforced Polyhydroxyalkanoate Composites [J]. China Plastics, 2016, 30(08): 11-16 . |
[7] | . Research on Poly(vinyl chloride) Modified with Poly(hydroxyalkanoates) [J]. China Plastics, 2015, 29(10): 37-41 . |
[8] | . Research Progress in Modification of Polyhydroxyalkanoate and Its Foam Materials [J]. China Plastics, 2013, 27(09): 6-10 . |
[9] | Qiang HUANG . 生物降解塑料技术研究进展 [J]. China Plastics, 2011, 25(11): 1-4 . |
[10] | FENG Yanhong ZHANG Yeqing QU Jinping HE Hezhi. Research Progress in Surface Modification of Fibers in Biodegradable Plastics/Plant Fiber Composites [J]. China Plastics, 2011, 25(10): 50-54 . |
[11] | Jiang Ying . Polyhydroxyalkanoates - A Broad Applied Biodegradable Polymer [J]. China Plastics, 2010, 24(02): 1-5 . |
[12] | XU Guo-zhi. Structure and Property of Fully Biodegradable Poly(butylene succinate)/Poly(butylene adipate/Terephthalate)(PBS/PBAT) Blends [J]. China Plastics, 2009, 23(08): 18-21 . |
[13] | WENG Yun-xuan;NIU Li-jie;XU Guo-zhi. Production Situation and Development Trend of Biodegradable Plastics in the World [J]. China Plastics, 2008, 22(12): 1-5 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||