京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (5): 36-42.DOI: 10.19491/j.issn.1001-9278.2022.05.007
• Materials and Properties • Previous Articles Next Articles
YANG Musen1,2,3(), QIAN Lijun1,2,3(
), WANG Jingyu1,2,3, ZHAO Zhen3,4, WANG Guangyu5, XIN Xiaohua5
Received:
2022-02-28
Online:
2022-05-26
Published:
2022-05-26
CLC Number:
YANG Musen, QIAN Lijun, WANG Jingyu, ZHAO Zhen, WANG Guangyu, XIN Xiaohua. Synergistic effect of triphenyl phosphate and methyloctabromoether on flame retardancy of polystyrene[J]. China Plastics, 2022, 36(5): 36-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2022.05.007
样品 | LOI/% | UL 94 | |||
---|---|---|---|---|---|
t1/s | t2/s | 是否滴落 | 阻燃等级 | ||
PS | 19.2 | 烧夹 | - | 是 | 无级别 |
PS/3 %TPP | 20.2 | 烧夹 | - | 是 | 无级别 |
PS/7 %TPP | 21.1 | 烧夹 | - | 是 | 无级别 |
PS/4 %MOBE | 26.1 | 0 | 0 | 是 | V⁃2 |
PS/7 %MOBE | 25.5 | 0 | 0 | 是 | V⁃2 |
PS/3 %TPP/4 %MOBE | 27.7 | 0 | 0 | 是 | V⁃2 |
样品 | LOI/% | UL 94 | |||
---|---|---|---|---|---|
t1/s | t2/s | 是否滴落 | 阻燃等级 | ||
PS | 19.2 | 烧夹 | - | 是 | 无级别 |
PS/3 %TPP | 20.2 | 烧夹 | - | 是 | 无级别 |
PS/7 %TPP | 21.1 | 烧夹 | - | 是 | 无级别 |
PS/4 %MOBE | 26.1 | 0 | 0 | 是 | V⁃2 |
PS/7 %MOBE | 25.5 | 0 | 0 | 是 | V⁃2 |
PS/3 %TPP/4 %MOBE | 27.7 | 0 | 0 | 是 | V⁃2 |
样品 | TTI/s | PHRR/kW·m-2 | THR/MJ·m-2 | TSP/m2 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | av⁃EHC/MJ·kg-2 |
---|---|---|---|---|---|---|---|
PS | 35 | 1 321 | 134 | 55.5 | 0.09 | 2.48 | 34.0 |
PS/4 %MOBE | 37 | 1 006 | 119 | 57.9 | 0.10 | 2.15 | 29.8 |
PS/3 %TPP/4 %MOBE | 37 | 835 | 105 | 62.4 | 0.11 | 1.89 | 26.3 |
样品 | TTI/s | PHRR/kW·m-2 | THR/MJ·m-2 | TSP/m2 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | av⁃EHC/MJ·kg-2 |
---|---|---|---|---|---|---|---|
PS | 35 | 1 321 | 134 | 55.5 | 0.09 | 2.48 | 34.0 |
PS/4 %MOBE | 37 | 1 006 | 119 | 57.9 | 0.10 | 2.15 | 29.8 |
PS/3 %TPP/4 %MOBE | 37 | 835 | 105 | 62.4 | 0.11 | 1.89 | 26.3 |
样品 | Td⁃1 %/ ℃ | Td⁃5 %/ ℃ | Td⁃max/ ℃ | MLR/ %·min-1 | R600 ℃/ % |
---|---|---|---|---|---|
TPP | 200 | 232 | 304 | -48.73 | 0.51 |
PS | 365 | 390 | 430 | -54.79 | 0.96 |
PS/4 %MOBE | 300 | 351 | 432 | -31.80 | 0.54 |
PS/3 %TPP/4 %MOBE | 292 | 329 | 423 | -31.87 | 0.65 |
样品 | Td⁃1 %/ ℃ | Td⁃5 %/ ℃ | Td⁃max/ ℃ | MLR/ %·min-1 | R600 ℃/ % |
---|---|---|---|---|---|
TPP | 200 | 232 | 304 | -48.73 | 0.51 |
PS | 365 | 390 | 430 | -54.79 | 0.96 |
PS/4 %MOBE | 300 | 351 | 432 | -31.80 | 0.54 |
PS/3 %TPP/4 %MOBE | 292 | 329 | 423 | -31.87 | 0.65 |
1 | AHMED L, ZHANG B, SHEN R Q, et al. Fire reaction properties of polystyrene⁃based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1 853⁃1 865. |
2 | LIU J C, GUO Y B, ZHANG Y B, et al. Thermal conduction and fire property of glass fiber⁃reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Degradation and Stability, 2016, 129: 180⁃191. |
3 | LIU J C, ZHANG Y B, GOU Y B, et al. Effect of carbon black on the thermal degradation and flammability properties of flame⁃retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Composites, 2018, 39(3): 770⁃782. |
4 | HAMDANI⁃DEVARENNES S, HAGE REL, DUMAZERT L, et al. Water⁃based flame retardant coating using nano⁃boehmite for expanded polystyrene (EPS) foam[J]. Progress in Organic Coatings, 2016, 99: 32⁃46. |
5 | VARNAGIRIS S, TUCKUTE S, LELIS M, et al. SiO2 films as heat resistant layers for protection of expandable polystyrene foam from flame torch⁃induced heat[J]. Journal of Thermoplastic Composite Materials, 2018, 31(5): 657⁃667. |
6 | WANG L Y, WANG C, LIU P W, et al. The flame resistance properties of expandable polystyrene foams coated with a cheap and effective barrier layer[J]. Construction and Building Materials, 2018, 176: 403⁃414. |
7 | WANG Y Q, JIANG H C, NI J Y, et al. Study on the effect of polyFR and its FR system on the flame retardancy and foaming behavior of polystyrene[J]. RSC Advances, 2018, 9(1): 192⁃205. |
8 | WU H Z, LIU J H, ZHANG Q, et al. Synergistic flame retardancy of tris(1‐methoxy‐2,2,6,6‐tetramethyl‐piperidin‐4‐yl)phosphite and tris(2,4,6‐tribromophenoxy)‐1,3,5‐triazine/Sb2O3 in high‐impact polystyrene[J]. Fire and Materials, 2020, 44(4): 573⁃584. |
9 | GELMONT M, YUZEFOVITCH M, YOFFE D, et al. Alkylation of aromatic compounds with pentabromobenzyl bromide and tetrabromoxylene dibromide as a new route to high molecular weight brominated flame retardants[J]. Polymers, 2020, 12(2): 1⁃18. |
10 | WANG L C, PAN G W, LYU R L. Study on the char⁃forming and synergistic flame retardant performance of SEBS/HIPS/PPO composites applied for cable[J]. Plastics Rubber and Composites, 2020, 49(5): 222⁃229. |
11 | SUN Y, WANG Y Z, QING Y B, et al. A DOPO‐base Schiff derivative used as a flame retardant for polystyrene[J]. Journal of Applied Polymer Science, 2020, 137(40): 1⁃9. |
12 | SHI Y Q, XING W Y, WANG B B, et al. Synergistic effect of graphitic carbon nitride and ammonium polyphosphate for enhanced thermal and flame retardant properties of polystyrene[J]. Materials Chemistry and Physics, 2016, 177: 283⁃292. |
13 | ZHU Z M, RAO W H, KANG A H, et al. Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite[J]. Polymer Degradation and Stability, 2018, 154: 1⁃9. |
14 | WU Z G, YANG L Z, ZHAN J, et al. Experimental study on polystyrene with intumescent flame retardants from different scale experiments[J]. Fire and Materials, 2016, 40(1): 18⁃26. |
15 | GAO C Q, SHI Y Q, CHEN Y J, et al. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding[J]. Journal of Colloid and Interface Science, 2022, 606: 1 193⁃1 204. |
16 | LIU J C, ZHANG Y B, GOU Y B, et al. Effect of carbon black on the thermal degradation and flammability properties of flame⁃retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite[J]. Polymer Composites, 2018, 39(3): 770⁃782. |
17 | LIU J C, ZHANG Y B, YU Z L, et al. Enhancement of organoclay on thermal and flame retardant properties of polystyrene/magnesium hydroxide composite[J]. Polymer Composites, 2016, 37(3): 746⁃755. |
18 | LI M E, YAN Y W, ZHAO H B, et al. A facile and efficient flame⁃retardant and smoke⁃suppressant resin coating for expanded polystyrene foams[J]. Composites Part B: Engineering, 2020, 185: 1⁃7. |
19 | JI W F, WANG D, GOU J, et al. The preparation of starch derivatives reacted with urea⁃phosphoric acid and effects on fire performance of expandable polystyrene foams [J]. Carbohydrate Polymers, 2020, 233: 1⁃10. |
20 | SABA N, PARIDAH M T, JAWAID M, et al. Thermal and flame retardancy behavior of oil palm based epoxy nanocomposites[J]. Journal of Polymers and the Environment, 2018, 26(5): 1 844⁃1 853. |
21 | WU H Z, LIU J H, ZHANG Q, et al. Synergistic fire retardancy of bis(1⁃methoxy⁃2,2,6,6⁃tetramethylpiperidin⁃4⁃yl)sebacate and tris(2,4,6⁃tribromophenoxy)⁃1,3,5⁃triazine/Sb2S3 in HIPS[J]. Advances in Materials Science and Engineering, 2020: 1⁃16. |
22 | KAYNAK C, ISITMAN N A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high⁃impact polystyrene containing brominated epoxy and antimony oxide[J]. Polymer Degradation and Stability, 2011, 96(5): 798⁃807. |
23 | BEACH M W, RONDAN N G, FROESE R D, et al. Studies of degradation enhancement of polystyrene by flame retardant additives[J]. Polymer Degradation and Stability, 2008, 93(9): 1 664⁃1 673. |
24 | LEVCHIK S V, WEI E D. New developments in flame retardancy of styrene thermoplastics and foams[J]. Polymer International, 2008, 57(3): 431⁃448. |
25 | LI H Y, CAI C G, CHEN Y K, et al. Thermal and thermo⁃oxidative degradation of flame retardant high impact polystyrene with triphenyl phosphate and novolac epoxy resin[J]. Journal of Wuhan University of Technology⁃Materials Science Edition, 2007, 22(3): 486⁃489. |
26 | ZHANG C W, LI X M, YANG R J, et al. Effects of triphenyl phosphate on styrene suspension polymerization process and flame retardance properties of polystyrene/triphenyl phosphate nanocomposite[J]. Colloid and Polymer Science, 2016, 294: 1 153⁃1 163. |
27 | NIROUMAND J S, PEIGHAMBARDOUST S J, SHENAVAR A. Polystyrene⁃based composites and nanocomposites with reduced brominated⁃flame retardant[J]. Iranian Polymer Journal, 2016, 25(7): 607⁃614. |
28 | ZHANG C W, YANG R J, LI X M, et al. Preparation of polystyrene/triphenyl phosphate composites by suspension polymerization and melt extrusion method⁃A comparative study[J]. Chinese Journal of Polymer Science, 2016,6: 688⁃696. |
29 | LIN J, LI J, LI X H, et al. Flame retardancy and toughe⁃ning modification of glass fiber⁃reinforced polycarbonate composites[J]. Polymer Journal, 2019, 51(7): 657⁃665. |
30 | SHAO L S, XU B, MA W, et al. Flame retardant application of a hypophosphite/cyclotetrasiloxane bigroup compound on polycarbonate[J]. Journal of Applied Polymer Science, 2020, 137: 1⁃13. |
31 | CHEN Z Q, JIANG M W, CHEN Z W, et al. Preparation and characterization of a microencapsulated flame retardant and its flame⁃retardant mechanism in unsaturated polyester resins[J]. Powder Technology, 2019, 354: 71⁃81. |
32 | TRUBACHEV S A, KOROBEINICHEV O P, KARPOV A I, et al. The effect of triphenyl phosphate inhibition on flame propagation over cast PMMA slabs[J]. Proceedings of the Combustion Institute, 2020, 38(3): 4 635⁃4 644. |
33 | LUO H, ZHOU F, YANG Y Y, et al. Gas⁃condensed phase flame⁃retardant mechanisms of tris(3⁃nitrophenyl) phosphine/triphenyl phosphate/ABS[J]. Journal of Thermal Analysis and Calorimetry, 2017, 132(1): 263⁃273. |
34 | NGUYEN T N, TRINH H T, SAM L H, et al. Halogen‐free flame‐retardant flexible polyurethane for textile coating: Preparation and characterisation[J]. Fire and Materials, 2020, 44(2): 269⁃282. |
[1] | . Research Progress in DOPO-Based Flame Retardants for Polymers [J]. China Plastics, 2018, 32(08): 7-13. |
[2] | . Progress in Research of Element-hybrid Flame Retardant Polystyrene [J]. China Plastics, 2016, 30(11): 1-7 . |
[3] | SI Mingming, HAO Jianwei, XU Lishi, DU Jianxin. Application analysis of nano-Sb2O3 on flame retardance [J]. China Plastics, 2013, 27(08): 1-7. |
[4] | LIU Ji-Chun . Flame Retardancy Methods for Polymer Materials [J]. China Plastics, 2012, 26(02): 1-6 . |
[5] | Detian LIAO Anbin TANG Xiuyun LI Hanbing MA Kanglin XU. Synergistic Effects of a Phosphorus-Silicon Flame Retardant with Ammonium Polyphosphate in Flame Retarded EVA [J]. China Plastics, 2011, 25(09): 85-89 . |
[6] | CHEN Shu-guo;YU Hai-yang;WANG Ru-yin;ZHANG Yong. Research Progress of Halogen-free Flame-retardants in Ethylene-Vinyl Acetate Copolymer [J]. China Plastics, 2008, 22(4): 13-20 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||