京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (6): 46-53.DOI: 10.19491/j.issn.1001-9278.2022.06.008
• Materials and Properties • Previous Articles Next Articles
CHEN Liang1, ZHANG Pingbo1(), JIANG Pingping1, BAO Yanmin2, GAO Xuewen2, XIA Jialiang2
Received:
2022-01-14
Online:
2022-06-26
Published:
2022-06-27
CLC Number:
CHEN Liang, ZHANG Pingbo, JIANG Pingping, BAO Yanmin, GAO Xuewen, XIA Jialiang. Preparation and properties of self⁃healing waterborne polyurethane based on disulfide bonds[J]. China Plastics, 2022, 36(6): 46-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2022.06.008
样品编号 | IPDI/g | PTMG/g | DMPA/g | AD/g | TEA/g | EDA/g | H2O/g |
---|---|---|---|---|---|---|---|
WPU⁃0 | 2.22 | 5.90 | 0.43 | 0.00 | 0.32 | 0.05 | 35.72 |
WPU⁃1 | 2.22 | 5.14 | 0.40 | 0.24 | 0.30 | 0.05 | 33.44 |
WPU⁃2 | 2.22 | 4.47 | 0.37 | 0.45 | 0.28 | 0.05 | 31.44 |
WPU⁃3 | 2.22 | 3.69 | 0.35 | 0.69 | 0.26 | 0.05 | 29.10 |
样品编号 | IPDI/g | PTMG/g | DMPA/g | AD/g | TEA/g | EDA/g | H2O/g |
---|---|---|---|---|---|---|---|
WPU⁃0 | 2.22 | 5.90 | 0.43 | 0.00 | 0.32 | 0.05 | 35.72 |
WPU⁃1 | 2.22 | 5.14 | 0.40 | 0.24 | 0.30 | 0.05 | 33.44 |
WPU⁃2 | 2.22 | 4.47 | 0.37 | 0.45 | 0.28 | 0.05 | 31.44 |
WPU⁃3 | 2.22 | 3.69 | 0.35 | 0.69 | 0.26 | 0.05 | 29.10 |
样品 | T5 %/℃ | T50 %/℃ | 250 ℃残碳率/% | 500 ℃残碳率/% |
---|---|---|---|---|
WPU⁃0 | 267.33 | 404.66 | 96.57 | 2.13 |
WPU⁃1 | 238.33 | 403.66 | 93.99 | 2.02 |
WPU⁃2 | 231.66 | 396.67 | 92.68 | 1.88 |
WPU⁃3 | 140.00 | 341.00 | 74.91 | 2.12 |
样品 | T5 %/℃ | T50 %/℃ | 250 ℃残碳率/% | 500 ℃残碳率/% |
---|---|---|---|---|
WPU⁃0 | 267.33 | 404.66 | 96.57 | 2.13 |
WPU⁃1 | 238.33 | 403.66 | 93.99 | 2.02 |
WPU⁃2 | 231.66 | 396.67 | 92.68 | 1.88 |
WPU⁃3 | 140.00 | 341.00 | 74.91 | 2.12 |
1 | 王宇奇, 葛硕硕, 张萍波, 等. 大豆油基多元醇改性水性聚氨酯胶黏剂的制备及性能研究[J]. 化工新型材料, 2016, 44: 191⁃193+197. |
WANG Y Q, GE S S, ZHANG P B, et al. Preparation and property of waterborne polyurethane adhesive modified with soybean oil⁃based polyol[J]. New Chemical Materials, 2016, 44(10): 191⁃193+197. | |
2 | 左莎莎, 徐 惠, 彭振军, 等. 环氧树脂⁃有机硅复合改性水性聚氨酯耐温防腐涂料的研究[J]. 塑料工业, 2020, 48(04): 53⁃57. |
ZUO S S, XU H, PENG Z J, et al. Study on Epoxy resin⁃organic silicon composite modified waterborne polyurethane temperature⁃resistant anticorrosive coating[J]. China Plastics Industry, 2020, 48(4): 53⁃57. | |
3 | HA Y M, KIM Y O, AHN S, et al. Robust and stretchable self⁃healing polyurethane based on polycarbonate diol with different soft⁃segment molecular weight for flexible devices[J]. European Polymer Journal, 2019, 118: 36⁃44. |
4 | CHANG K, JIA H, GU S Y. A transparent, highly stretchable, self⁃healing polyurethane based on disulfide bonds[J]. European Polymer Journal, 2019, 112: 822⁃831. |
5 | ZHENG X R, YANG H, SUN Y G, et al. A molecular dynamics simulation on self⁃healing behavior based on disulfide bond exchange reactions[J]. Polymer, 2021, 212: 123111. |
6 | AIZPURUA J, MARTIN L, FORMOSO E, et al. One pot stimuli⁃responsive linear waterborne polyurethanes via Diels⁃Alder reaction[J]. Progress in Organic Coatings, 2019, 130: 31⁃43. |
7 | ZHAO B J, MEI H G, HANG G H, et al. Shape recovery and reprocessable polyurethanes crosslinked with double decker silsesquioxane via Diels⁃Alder reaction[J]. Polymer, 2021, 230: 124042. |
8 | KUHL N, BODE S, BOSE R K, et al. Acylhydrazones as reversible covalent crosslinkers for self⁃healing polymers[J]. Advanced Functional Materials, 2015, 25(22): 3 295⁃3 301. |
9 | XIAO G F, WANG Y, ZHANG H, et al. Facile strategy to construct a self⁃healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone[J]. Carbohydrate Polymers, 2019, 218: 68⁃77. |
10 | BURATTINI S, GREENLAND B W, MERINO D H, et al. A healable supramolecular polymer blend based on aromatic pi⁃pi stacking and hydrogen⁃bonding interactions[J]. Journal of the American Chemical Society, 2010, 132(34): 12 051⁃12 058. |
11 | LALITHA K, PRASAD Y S, SRIDHARAN V, et al. A renewable resource⁃derived thixotropic self⁃assembled supramolecular gel: magnetic stimuli responsive and real⁃time self⁃healing behaviour[J]. Rsc Advances, 2015, 5(95): 77 589⁃77 594. |
12 | CHEN Y L, GUAN Z B. Multivalent hydrogen bonding block copolymers self⁃assemble into strong and tough self⁃healing materials[J]. Chemical Communications, 2014, 50(74): 10 868⁃10 870. |
13 | ZHAO D W, FENG M, ZHANG L, et al. Facile synthesis of self⁃healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond[J]. Carbohydrate Polymers, 2021, 256: 117580. |
14 | LI Z X, SHAN Y F, WANG X X, et al. Self ⁃healing flexible sensor based on metal⁃ligand coordination[J]. Chemical Engineering Journal, 2020, 394: 124932. |
15 | WANG L, DI S B, WANG W X, et al. Self⁃healing and shape memory capabilities of copper⁃coordination polymer network[J]. Rsc Advances, 2015, 5(37): 28 896⁃28 900. |
16 | HUA Y, LI X L, MA L, et al. Self⁃healing mineralization and enhanced anti⁃corrosive performance of polyurethane CaCO3 composite film via beta⁃CD induction[J]. Materials & Design, 2019, 177: 107856. |
17 | MIYAMAE K, NAKAHATA M, TAKASHIMA Y, et al. Self⁃healing, expansion⁃contraction, and shape⁃memory properties of a preorganized supramolecular hydrogel through host⁃guest interactions[J]. Angewandte Chemie⁃International Edition, 2015, 54(31): 8 984⁃8 987. |
18 | CHEN S J, MO F N, YANG Y, et al. Development of zwitterionic polyurethanes with multi⁃shape memory effects and self⁃healing properties[J]. Journal of Materials Chemistry A, 2015, 3(6): 2 924⁃2 933. |
19 | ZHANG W C, WANG M H, ZHOU J H, et al. Preparation of room⁃temperature self⁃healing elastomers with high strength based on multiple dynamic bonds[J]. European Polymer Journal, 2021, 156: 110614. |
20 | HUANG H H, ZHOU W, ZHONG Z Y, et al. Self⁃antiglare waterborne coating with superior mechanical robustness and highly efficient room⁃temperature self⁃healing capability[J]. Progress in Organic Coatings, 2020, 146: 105717. |
21 | LI T, XIE Z N, XU J, et al. Design of a self⁃healing cross⁃linked polyurea with dynamic cross⁃links based on disulfide bonds and hydrogen bonding[J]. European Polymer Journal, 2018, 107: 249⁃257. |
22 | LU J, ZHANG Y, TAO Y, et al. Self⁃healable castor oil⁃based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. J Colloid Interface Sci, 2021, 588: 164⁃174. |
23 | DAI Z D, JIANG P P, LOU W X, et al. Preparation of degradable vegetable oil⁃based waterborne polyurethane with tunable mechanical and thermal properties[J]. European Polymer Journal, 2020, 139: 109994. |
24 | LIU M C, ZHONG J, LI Z J, et al. A high stiffness and self⁃healable polyurethane based on disulfide bonds and hydrogen bonding[J]. European Polymer Journal, 2020, 124: 109475. |
25 | SUN Y L, SHENG D K, WU H H, et al. Bio⁃based vitrimer⁃like polyurethane based on dynamic imine bond with high⁃strength, reprocessability, rapid⁃degradability and antibacterial ability[J]. Polymer, 2021, 233: 124208. |
26 | 葛硕硕, 张萍波, 蒋平平, 等. 聚醚硅氧烷二元醇改性蓖麻油基水性聚氨酯的合成及性能[J]. 中国塑料, 2017, 31: 28⁃35. |
GE S S, ZHANG P B, JIANG P P, et al. Preparation and properties of castor⁃oil⁃based polyurethane modified by polyether⁃polysiloxane polyols[J]. China Plastics, 2017, 31(6): 28⁃35. | |
27 | WEI Z K, LIU Z M, FU X W, et al. Effect of crystalline structure on water resistance of waterborne polyurethane[J]. European Polymer Journal, 2021, 157: 110647. |
28 | NEVEJANS S, BALLARD N, MIRANDA J I, et al. The underlying mechanisms for self⁃healing of poly(disulfide)s[J]. Physical Chemistry Chemical Physics, 2016, 18(39): 27 577⁃27 583. |
[1] | LUO Jun, HUANG Hongsheng, YE Xiaolan, REN Jun, NIE Shengqiang, WANG Yi, ZHANG Chunmei, LIU Yuan. Preparation and self⁃healing performance of pyridine⁃containing polyurethane [J]. China Plastics, 2022, 36(5): 47-52. |
[2] | YANG Zhitao, FANG Xinglei, LAI Shaochuan, XIONG Daoying, WANG Yao, ZHANG Chen, HE Hezhi, ZHANG He. A Self⁃healing Epoxy Cured with Anhydride at Middle and High Temperatures [J]. China Plastics, 2021, 35(11): 15-23. |
[3] | . Synthesis and Preparation of Carboxylic-Acid-Type Waterborne Polyurethane Modified with Nano-Cellulose Whiskers [J]. China Plastics, 2019, 33(2): 75-81. |
[4] | . Preparation and Properties of Castor-oil-based Polyurethane Modified by Polyether-polysiloxane Polyols [J]. China Plastics, 2017, 31(6): 28-35 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||