京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (7): 115-120.DOI: 10.19491/j.issn.1001-9278.2022.07.016
• Processing and Application • Previous Articles Next Articles
WANG Xiaodong(), WANG Quan(
), CHEN Tuo, ZHENG Yue
Received:
2021-11-30
Online:
2022-07-26
Published:
2022-07-20
CLC Number:
WANG Xiaodong, WANG Quan, CHEN Tuo, ZHENG Yue. Optimization of multi⁃objective parameters for double color injection⁃molding based on grey relational analysis and entropy weight method[J]. China Plastics, 2022, 36(7): 115-120.
序号 | A/℃ | B/℃ | C/% | D/℃ | E/℃ | F/% | ||
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 15.84 | 2.186 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 16.07 | 2.111 |
3 | 1 | 3 | 3 | 3 | 3 | 3 | 16.39 | 2.086 |
4 | 1 | 4 | 4 | 4 | 4 | 4 | 16.48 | 2.057 |
5 | 1 | 5 | 5 | 5 | 5 | 5 | 16.75 | 2.057 |
6 | 2 | 1 | 2 | 3 | 4 | 5 | 16.48 | 2.114 |
7 | 2 | 2 | 3 | 4 | 5 | 1 | 17.10 | 2.156 |
8 | 2 | 3 | 4 | 5 | 1 | 2 | 15.77 | 2.034 |
9 | 2 | 4 | 5 | 1 | 2 | 3 | 15.98 | 2.060 |
10 | 2 | 5 | 1 | 2 | 3 | 4 | 16.19 | 2.266 |
11 | 3 | 1 | 3 | 5 | 2 | 4 | 15.99 | 2.078 |
12 | 3 | 2 | 4 | 1 | 3 | 5 | 16.10 | 2.072 |
13 | 3 | 3 | 5 | 2 | 4 | 1 | 16.72 | 2.104 |
14 | 3 | 4 | 1 | 3 | 5 | 2 | 16.89 | 2.327 |
15 | 3 | 5 | 2 | 4 | 1 | 3 | 15.69 | 2.225 |
16 | 4 | 1 | 4 | 2 | 5 | 3 | 16.97 | 2.126 |
17 | 4 | 2 | 5 | 3 | 1 | 4 | 15.64 | 2.025 |
18 | 4 | 3 | 1 | 4 | 2 | 5 | 15.84 | 2.240 |
19 | 4 | 4 | 2 | 5 | 3 | 1 | 16.55 | 2.235 |
20 | 4 | 5 | 3 | 1 | 4 | 2 | 16.69 | 2.219 |
21 | 5 | 1 | 5 | 4 | 3 | 2 | 16.44 | 2.093 |
22 | 5 | 2 | 1 | 5 | 4 | 3 | 16.72 | 2.300 |
23 | 5 | 3 | 2 | 1 | 5 | 4 | 16.89 | 2.255 |
24 | 5 | 4 | 3 | 2 | 1 | 5 | 15.57 | 2.184 |
25 | 5 | 5 | 4 | 3 | 2 | 1 | 16.23 | 2.155 |
序号 | A/℃ | B/℃ | C/% | D/℃ | E/℃ | F/% | ||
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 15.84 | 2.186 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 16.07 | 2.111 |
3 | 1 | 3 | 3 | 3 | 3 | 3 | 16.39 | 2.086 |
4 | 1 | 4 | 4 | 4 | 4 | 4 | 16.48 | 2.057 |
5 | 1 | 5 | 5 | 5 | 5 | 5 | 16.75 | 2.057 |
6 | 2 | 1 | 2 | 3 | 4 | 5 | 16.48 | 2.114 |
7 | 2 | 2 | 3 | 4 | 5 | 1 | 17.10 | 2.156 |
8 | 2 | 3 | 4 | 5 | 1 | 2 | 15.77 | 2.034 |
9 | 2 | 4 | 5 | 1 | 2 | 3 | 15.98 | 2.060 |
10 | 2 | 5 | 1 | 2 | 3 | 4 | 16.19 | 2.266 |
11 | 3 | 1 | 3 | 5 | 2 | 4 | 15.99 | 2.078 |
12 | 3 | 2 | 4 | 1 | 3 | 5 | 16.10 | 2.072 |
13 | 3 | 3 | 5 | 2 | 4 | 1 | 16.72 | 2.104 |
14 | 3 | 4 | 1 | 3 | 5 | 2 | 16.89 | 2.327 |
15 | 3 | 5 | 2 | 4 | 1 | 3 | 15.69 | 2.225 |
16 | 4 | 1 | 4 | 2 | 5 | 3 | 16.97 | 2.126 |
17 | 4 | 2 | 5 | 3 | 1 | 4 | 15.64 | 2.025 |
18 | 4 | 3 | 1 | 4 | 2 | 5 | 15.84 | 2.240 |
19 | 4 | 4 | 2 | 5 | 3 | 1 | 16.55 | 2.235 |
20 | 4 | 5 | 3 | 1 | 4 | 2 | 16.69 | 2.219 |
21 | 5 | 1 | 5 | 4 | 3 | 2 | 16.44 | 2.093 |
22 | 5 | 2 | 1 | 5 | 4 | 3 | 16.72 | 2.300 |
23 | 5 | 3 | 2 | 1 | 5 | 4 | 16.89 | 2.255 |
24 | 5 | 4 | 3 | 2 | 1 | 5 | 15.57 | 2.184 |
25 | 5 | 5 | 4 | 3 | 2 | 1 | 16.23 | 2.155 |
实验次序 | 信噪比 | 无量纲化后结果 | 灰色关联度系数 | 灰色关联度 | 排序 | |||
---|---|---|---|---|---|---|---|---|
1 | -23.995 | -6.793 | 0.817 | 0.450 | 0.732 | 0.476 | 0.588 | 12 |
2 | -24.120 | -6.490 | 0.663 | 0.701 | 0.597 | 0.626 | 0.613 | 10 |
3 | -24.292 | -6.386 | 0.453 | 0.787 | 0.477 | 0.701 | 0.604 | 11 |
4 | -24.339 | -6.265 | 0.394 | 0.888 | 0.452 | 0.816 | 0.658 | 7 |
5 | -24.480 | -6.265 | 0.221 | 0.888 | 0.391 | 0.816 | 0.631 | 8 |
6 | -24.339 | -6.502 | 0.394 | 0.691 | 0.452 | 0.618 | 0.546 | 15 |
7 | -24.660 | -6.673 | 0.000 | 0.549 | 0.333 | 0.526 | 0.442 | 20 |
8 | -23.957 | -6.167 | 0.864 | 0.969 | 0.786 | 0.941 | 0.873 | 2 |
9 | -24.072 | -6.277 | 0.723 | 0.877 | 0.643 | 0.803 | 0.733 | 3 |
10 | -24.185 | -7.105 | 0.584 | 0.191 | 0.546 | 0.382 | 0.453 | 19 |
11 | -24.077 | -6.353 | 0.716 | 0.814 | 0.638 | 0.729 | 0.690 | 5 |
12 | -24.137 | -6.328 | 0.643 | 0.835 | 0.583 | 0.752 | 0.679 | 6 |
13 | -24.465 | -6.461 | 0.240 | 0.725 | 0.397 | 0.645 | 0.537 | 16 |
14 | -24.553 | -7.336 | 0.132 | 0.000 | 0.365 | 0.333 | 0.347 | 25 |
15 | -23.912 | -6.947 | 0.918 | 0.323 | 0.860 | 0.425 | 0.614 | 9 |
16 | -24.594 | -6.551 | 0.082 | 0.650 | 0.352 | 0.588 | 0.486 | 18 |
17 | -23.885 | -6.129 | 0.952 | 1.000 | 0.913 | 1.000 | 0.962 | 1 |
18 | -23.995 | -7.005 | 0.817 | 0.274 | 0.732 | 0.408 | 0.549 | 14 |
19 | -24.376 | -6.986 | 0.349 | 0.290 | 0.434 | 0.413 | 0.423 | 21 |
20 | -24.449 | -6.923 | 0.259 | 0.342 | 0.403 | 0.432 | 0.419 | 22 |
21 | -24.318 | -6.415 | 0.420 | 0.763 | 0.463 | 0.678 | 0.584 | 13 |
22 | -24.465 | -7.235 | 0.240 | 0.084 | 0.397 | 0.353 | 0.372 | 24 |
23 | -24.553 | -7.063 | 0.132 | 0.226 | 0.365 | 0.393 | 0.381 | 23 |
24 | -23.846 | -6.785 | 1.000 | 0.456 | 1.000 | 0.479 | 0.706 | 4 |
25 | -24.206 | -6.669 | 0.557 | 0.553 | 0.530 | 0.528 | 0.529 | 17 |
实验次序 | 信噪比 | 无量纲化后结果 | 灰色关联度系数 | 灰色关联度 | 排序 | |||
---|---|---|---|---|---|---|---|---|
1 | -23.995 | -6.793 | 0.817 | 0.450 | 0.732 | 0.476 | 0.588 | 12 |
2 | -24.120 | -6.490 | 0.663 | 0.701 | 0.597 | 0.626 | 0.613 | 10 |
3 | -24.292 | -6.386 | 0.453 | 0.787 | 0.477 | 0.701 | 0.604 | 11 |
4 | -24.339 | -6.265 | 0.394 | 0.888 | 0.452 | 0.816 | 0.658 | 7 |
5 | -24.480 | -6.265 | 0.221 | 0.888 | 0.391 | 0.816 | 0.631 | 8 |
6 | -24.339 | -6.502 | 0.394 | 0.691 | 0.452 | 0.618 | 0.546 | 15 |
7 | -24.660 | -6.673 | 0.000 | 0.549 | 0.333 | 0.526 | 0.442 | 20 |
8 | -23.957 | -6.167 | 0.864 | 0.969 | 0.786 | 0.941 | 0.873 | 2 |
9 | -24.072 | -6.277 | 0.723 | 0.877 | 0.643 | 0.803 | 0.733 | 3 |
10 | -24.185 | -7.105 | 0.584 | 0.191 | 0.546 | 0.382 | 0.453 | 19 |
11 | -24.077 | -6.353 | 0.716 | 0.814 | 0.638 | 0.729 | 0.690 | 5 |
12 | -24.137 | -6.328 | 0.643 | 0.835 | 0.583 | 0.752 | 0.679 | 6 |
13 | -24.465 | -6.461 | 0.240 | 0.725 | 0.397 | 0.645 | 0.537 | 16 |
14 | -24.553 | -7.336 | 0.132 | 0.000 | 0.365 | 0.333 | 0.347 | 25 |
15 | -23.912 | -6.947 | 0.918 | 0.323 | 0.860 | 0.425 | 0.614 | 9 |
16 | -24.594 | -6.551 | 0.082 | 0.650 | 0.352 | 0.588 | 0.486 | 18 |
17 | -23.885 | -6.129 | 0.952 | 1.000 | 0.913 | 1.000 | 0.962 | 1 |
18 | -23.995 | -7.005 | 0.817 | 0.274 | 0.732 | 0.408 | 0.549 | 14 |
19 | -24.376 | -6.986 | 0.349 | 0.290 | 0.434 | 0.413 | 0.423 | 21 |
20 | -24.449 | -6.923 | 0.259 | 0.342 | 0.403 | 0.432 | 0.419 | 22 |
21 | -24.318 | -6.415 | 0.420 | 0.763 | 0.463 | 0.678 | 0.584 | 13 |
22 | -24.465 | -7.235 | 0.240 | 0.084 | 0.397 | 0.353 | 0.372 | 24 |
23 | -24.553 | -7.063 | 0.132 | 0.226 | 0.365 | 0.393 | 0.381 | 23 |
24 | -23.846 | -6.785 | 1.000 | 0.456 | 1.000 | 0.479 | 0.706 | 4 |
25 | -24.206 | -6.669 | 0.557 | 0.553 | 0.530 | 0.528 | 0.529 | 17 |
水平 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
1 | 0.619 | 0.579 | 0.462 | 0.560 | 0.749 | 0.504 |
2 | 0.610 | 0.614 | 0.515 | 0.559 | 0.623 | 0.567 |
3 | 0.573 | 0.589 | 0.572 | 0.597 | 0.549 | 0.562 |
4 | 0.568 | 0.573 | 0.645 | 0.569 | 0.506 | 0.629 |
5 | 0.514 | 0.529 | 0.689 | 0.598 | 0.457 | 0.622 |
极差 | 0.105 | 0.085 | 0.227 | 0.039 | 0.292 | 0.125 |
排序 | 4 | 5 | 2 | 6 | 1 | 3 |
水平 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
1 | 0.619 | 0.579 | 0.462 | 0.560 | 0.749 | 0.504 |
2 | 0.610 | 0.614 | 0.515 | 0.559 | 0.623 | 0.567 |
3 | 0.573 | 0.589 | 0.572 | 0.597 | 0.549 | 0.562 |
4 | 0.568 | 0.573 | 0.645 | 0.569 | 0.506 | 0.629 |
5 | 0.514 | 0.529 | 0.689 | 0.598 | 0.457 | 0.622 |
极差 | 0.105 | 0.085 | 0.227 | 0.039 | 0.292 | 0.125 |
排序 | 4 | 5 | 2 | 6 | 1 | 3 |
1 | 石晓慧,王守城,王恒冲,等.基于Moldflow及正交实验的双色注塑工艺参数优化[J].塑料,2015,44(2):113⁃116. |
SHI X H, WANG S C, WANG H C,et al. Parameters optimization of two⁃colored injection molding process based on moldflow and orthogonal test[J].Plastics,2015,44(2):113⁃116. | |
2 | 苗 盈,晏子翔.双色注塑成型工艺参数多目标优化[J].塑料工业,2020,48(8):96⁃99. |
MIAO Y, YAN Z X. Multi⁃objective optimization of bi⁃color injection molding process parameters[J]. China Plastics Industry,2020,48(8):96⁃99. | |
3 | Kitayama S, Yamazaki Y, Takano M, et al. Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi⁃criteria decision making[J]. Simulation Modelling Practice and Theory, 2018, 85: 95⁃105. |
4 | 谭安平,尹小燕,刘克威. 基于Moldflow的双色成型数值分析及正交法优化[J].合成树脂及塑料,2020,37(4):38⁃42. |
TAN A P, YIN X Y, LIU K W. Optimization for data analysis and orthogonal test of double⁃shot molding based on Moldflow[J] China Synthetic Resin and Plastics,2020,37(4):38⁃42. | |
5 | 李桂金,匡唐清,金凯.基于随形水路技术的带把双色水杯注塑模具设计[J].中国塑料,2018,32(1):131⁃136. |
LI G J, KUANG T Q, JIN K. Design of injection molds for a two⁃color cup with handles based on conformal cooling technology[J].China Plastics,2018,32(1):131⁃136. | |
6 | 杨 雪.双色扁长塑件翘曲变形的数值模拟与多目标优化[D].镇江:江苏大学,2019. |
7 | 林华钊.汽车密封壳体精密双色注塑模具的优化设计研究[D].广州:华南理工大学,2017. |
8 | 王海峰,沈鑫华.信噪比灰色关联分析在注塑工艺参数优化中的应用[J].塑料工业,2019,47(4):69⁃72. |
WANG H F, SHEN X H. Application of grey correlation analysis of SNR in injection molding process parameter optimization[J].China Plastics and Industry,2019,47(4):69⁃72. | |
9 | 段家现.基于灰色关联分析的注塑工艺参数优化[J].塑料,2017,46(4):88⁃92. |
DUAN J X. Optimization of injection molding process parameters based on grey relational analysis[J]. Plastics,2017,46(4):88⁃92. | |
10 | 赵永刚,于 珍.基于熵权⁃变异法对不同汽车品牌满意度影响因素评价研究[J].中国汽车,2021(10):4⁃9. |
ZHAO Y G, YU Z.Research on evaluation of factors influencing satisfaction of different automobile brands based on entropy weight⁃variation method[J].China Auto,2021(10):4⁃9. | |
11 | 秦 欣,苏小平,陈相宇.基于熵权法的汽车进气歧管上盖注塑方案多目标优化[J]塑料科技,2019,47(3):70⁃75. |
QIN X, SU X P, CHEN X Y. Multi⁃objective optimization of injection moulding scheme for upper cover of automobile intake manifold based on entropy weight method[J].Plastics Science and Technology,2019,47(3):70⁃75. | |
12 | 蒋荣超,刘大维,王登峰.基于熵权TOPSIS方法的整车动力学性能多目标优化[J].机械工程学报,2018,54(2):150⁃158. |
JIANG R C, LIU D W, WANG D F. Multi⁃objective optimization of vehicle dynamics performance based on entropy weighted TOPSIS method[J].Journal of Mechanical Engineering,2018,54(2):150⁃158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||