京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (1): 1-6.DOI: 10.19491/j.issn.1001-9278.2024.01.001
• Materials and Properties •
PAN Bochao, LIN Chenxi, TANG Donglin()
Received:
2023-07-23
Online:
2024-01-26
Published:
2024-01-22
CLC Number:
PAN Bochao, LIN Chenxi, TANG Donglin. Preparation and properties of bio⁃based poly(urea⁃amide)s[J]. China Plastics, 2024, 38(1): 1-6.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.01.001
样品 | 第一阶段 | 第二阶段 | 第三阶段 | 真空度/MPa | |||
---|---|---|---|---|---|---|---|
设置温度/°C | 反应时间/h | 设置温度/°C | 反应时间/h | 设置温度/°C | 反应时间/h | ||
PUA⁃DA10 | 240 | 1 | 280 | 3 | 300 | 2 | 0.06 |
PUA⁃DA12 | 240 | 1 | 285 | 3 | 305 | 2 | 0.06 |
PUA⁃DmA | 240 | 1 | 260 | 3 | 280 | 2 | 0.06 |
样品 | 第一阶段 | 第二阶段 | 第三阶段 | 真空度/MPa | |||
---|---|---|---|---|---|---|---|
设置温度/°C | 反应时间/h | 设置温度/°C | 反应时间/h | 设置温度/°C | 反应时间/h | ||
PUA⁃DA10 | 240 | 1 | 280 | 3 | 300 | 2 | 0.06 |
PUA⁃DA12 | 240 | 1 | 285 | 3 | 305 | 2 | 0.06 |
PUA⁃DmA | 240 | 1 | 260 | 3 | 280 | 2 | 0.06 |
样品 | Tga)/ ℃ | Tcb)/ ℃ | Tma)/ ℃ | Td,5 %/ ℃ | Td,1c)/ ℃ | Td,2c)/ ℃ | ΔHm,2a)/ J·g-1 |
---|---|---|---|---|---|---|---|
PUA⁃DA10 | 33.9 | 124.6 | 168.1 | 350.7 | 385.1 | 480.5 | 24.4 |
PUA⁃DA12 | 38.5 | 152.1 | 178.8 | 365.6 | 387.3 | 481.0 | 26.7 |
PUA⁃DmA | 2.7 | 99.7 | 164.6 | 373.7 | 382.0 | 474.5 | 8.6 |
样品 | Tga)/ ℃ | Tcb)/ ℃ | Tma)/ ℃ | Td,5 %/ ℃ | Td,1c)/ ℃ | Td,2c)/ ℃ | ΔHm,2a)/ J·g-1 |
---|---|---|---|---|---|---|---|
PUA⁃DA10 | 33.9 | 124.6 | 168.1 | 350.7 | 385.1 | 480.5 | 24.4 |
PUA⁃DA12 | 38.5 | 152.1 | 178.8 | 365.6 | 387.3 | 481.0 | 26.7 |
PUA⁃DmA | 2.7 | 99.7 | 164.6 | 373.7 | 382.0 | 474.5 | 8.6 |
样品 | 弹性模量/ MPa | 屈服强度/ MPa | 断裂强度/ MPa | 断裂伸长率/% | 韧性/ J·cm-3 |
---|---|---|---|---|---|
PUA⁃DA10 | 176±26 | 30.8±4.4 | 40.7±7.6 | 400±80 | 118±39 |
PUA⁃DA12 | 191±4 | 35.6±0.6 | 43.3±1.5 | 400±30 | 133±13 |
PUA⁃DmA | 77±8 | 11.2±0.3 | 27.5±1.1 | 660±30 | 114±8 |
样品 | 弹性模量/ MPa | 屈服强度/ MPa | 断裂强度/ MPa | 断裂伸长率/% | 韧性/ J·cm-3 |
---|---|---|---|---|---|
PUA⁃DA10 | 176±26 | 30.8±4.4 | 40.7±7.6 | 400±80 | 118±39 |
PUA⁃DA12 | 191±4 | 35.6±0.6 | 43.3±1.5 | 400±30 | 133±13 |
PUA⁃DmA | 77±8 | 11.2±0.3 | 27.5±1.1 | 660±30 | 114±8 |
1 | Iwata T. Biodegradable and bio⁃based polymers: future prospects of eco⁃friendly plastics[J]. Angewandte Chemie International Edition, 2015, 54(11): 3 210⁃3 215. |
2 | Garrison T F, Murawski A, Quirino R L. Bio⁃based polymers with potential for biodegradability[J]. Polymers, 2016, 8(7): 262. |
3 | Zhang Q, Song M, Xu Y Y, et al. Bio⁃based polyesters: recent progress and future prospects[J]. Progress in Polymer Science, 2021, 120: 101430. |
4 | Tang Y L, Zheng G Q, Lin Y X, et al. Bio⁃based long⁃chain aliphatic polyamide with intrinsic flame retardancy and great overall properties[J]. Polymer Degradation and Stability, 2023, 214: 110416. |
5 | Li Y D, Jian X Y, Zhu J, et al. Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers[J]. Polymer Testing, 2018, 72: 140⁃146. |
6 | Lin C X, Xie K Z, Tang D L. High⁃performance thermoplastic polyureas via a non‐isocyanate route from urea and aliphatic diamines[J]. Journal of Applied Polymer Science, 2022, 139(28): e52513. |
7 | Winnacker M, Rieger B. Biobased polyamides: recent advances in basic and applied research[J]. Macromolecular Rapid Communications, 2016, 37(17): 1 391⁃1 413. |
8 | Fukuda Y, Sasanuma Y. Computational characterization of nylon 4, a biobased and biodegradable polyamide superior to nylon 6[J]. ACS Omega, 2018, 3(8): 9 544⁃9 555. |
9 | Ogunniyi D S. Castor oil: a vital industrial raw material[J]. Bioresource Technology, 2006, 97(9): 1 086⁃1 091. |
10 | 安田真穂, 宫保淳. ヒマシ油から作るポリアミド[J]. 繊維学会誌, 2010, 66(4): 137⁃142. |
11 | Funk I, Rimmel N, Schorsch C, et al. Production of dodecanedioic acid via biotransformation of low cost plant⁃oil derivatives using candida tropicalis[J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(10): 1 491⁃1 502. |
12 | Quiles⁃Carrillo L, Montanes N, Boronat T, et al. Evaluation of the engineering performance of different bio⁃based aliphatic homopolyamide tubes prepared by profile extrusion[J]. Polymer Testing, 2017, 61: 421⁃429. |
13 | 陈焕章, 王春芳. 二聚酸的生产与应用[J]. 化工时刊, 1994 (12): 10⁃12. |
CHEN H Z, WANG C F. Production and application of dimer acid[J]. Chemical Industry Times, 1994 (12): 10⁃12. | |
14 | Geeti D K, Niranjan K. Environmentally benign bio⁃based waterborne polyesters: synthesis, thermal⁃ and bio⁃degradation studies[J]. Progress in Organic Coatings, 2019, 127: 419⁃428. |
15 | Xu B W, Yin Q C, Han F L, et al. A bio⁃based healable/renewable polyurethane elastomer derived from l⁃tyrosine/vanillin/dimer acid[J]. Chemical Engineering Science, 2022, 258: 117736. |
16 | Ranganathan P, Chen C W, Tasi M C, et al. Biomass thermoplastic (co)polyamide elastomers synthesized from a fatty dimer acid: a sustainable route toward a new era of uniform and bimodal foams[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12 139⁃12 154. |
17 | Park M S, Lee S J, Kim A R, et al. Toughened and hydrophobically modified polyamide 11 copolymers with dimer acids derived from waste vegetable oil[J]. Journal of Applied Polymer Science, 2019, 136(10): 47174. |
18 | Zhang Z H, Lin C X, Hou R, et al. Construction of polyallophanate vitrimers from poly(urea carbonate) via group revival induced crosslinking[J]. European Polymer Journal, 2021, 161: 110819. |
19 | Tang D L, Chen Z J, Correa⁃Netto F, et al. Poly(urea ester): a family of biodegradable polymers with high melting temperatures[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(24): 3 795⁃3 799. |
20 | Li S Q, Sang Z H, Zhao J B, et al. Crystallizable and tough aliphatic thermoplastic polyureas synthesized through a nonisocyanate route[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 1 902⁃1 911. |
21 | Deng Y, Li S Q, Zhao J B, et al. Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non⁃isocyanate route[J]. RSC Advances, 2014, 4(82): 43 406⁃43 414. |
22 | Holding S. Polymers: a property database[J]. Chromatographia, 2010, 72(5): 587⁃587. |
23 | Ranganathan P, Chen Y H, Rwei S P, et al. Optically transparent bio⁃based polyamides with microcellular foaming properties derived from renewable difunctional aminoamides[J]. Journal of Applied Polymer Science, 2022, 139(2): 51461. |
24 | Chen Z X, Ma H R, Li Y X, et al. Biomass polyamide elastomers based on hydrogen bonds with rapid self⁃healing properties[J]. European Polymer Journal, 2020, 133: 109802. |
25 | Wang X H. Effect of intercalating agents on structure and properties of dimer acid⁃based polyamide modified by in situ doping of na⁃montmorillonite[J]. Polymers for Advanced Technologies, 2017, 28(8): 1 030⁃1 037. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||