京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (1): 132-140.DOI: 10.19491/j.issn.1001-9278.2025.01.021
• Review • Previous Articles
GUO Sanci1, WANG Lei1, YUAN Hongyue2, YANG Yidan3, LIU Xianhu3, PAN Yamin3()
Received:
2024-04-12
Online:
2025-01-26
Published:
2025-02-14
CLC Number:
GUO Sanci, WANG Lei, YUAN Hongyue, YANG Yidan, LIU Xianhu, PAN Yamin. Research progress in radiative cooling materials and their applications[J]. China Plastics, 2025, 39(1): 132-140.
1 | Karmaker A K, Rahman M M, Hossain M A, et al. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh [J]. Journal of Cleaner Production, 2020,244: 118645 . |
2 | Liang J, Wu J, Guo J, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality [J]. National Science Review, 2023,10: 208. |
3 | 闵心喆, 王雪旸, 李金磊, 等. 一种基于辐射制冷和太阳能制热的温度自适应双层薄膜[J]. Science Bulletin, 2023,68:2 054-2 062. |
MIN X Z, WANG X Y, LI J L, et al. A smart thermal-gated bilayer membrane for temperature-adaptive radiative cooling and solar heating [J]. Science Bulletin, 2023,68:2 054-2 062. | |
4 | 王富强, 张鑫平, 汤智清, 等. 仿生型辐射制冷膜的可见-近红外双波段光谱辐射特性调控[J]. 中国石油大学学报(自然科学版), 2023,47:151-157. |
WANG F Q, ZHANG X P, TANG Z Q, et al. Regulation of visible-near infrared dual-band spectral radiative characteristics on biomimetic radiative cooling film[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47:151-157. | |
5 | Cui Y, Luo X, Zhang F, et al. Progress of passive daytime radiative cooling technologies towards commercial applications [J]. Particuology, 2022,67:57-67. |
6 | Fan S H, Li W. Photonics and thermodynamics concepts in radiative cooling [J]. Nature Photonics, 2022,16:182-190. |
7 | 柳冰莹. 超疏水辐射自降温聚合物复合材料的制备与性能研究 [D]. 西安:陕西科技大学, 2023. |
8 | Hossain M M, Gu M. Radiative cooling: principles, progress, and potentials [J]. Advanced Science, 2016,3: 1500360. |
9 | Zhu H, Wang Y, Qu M, et al. Electrospun poly(vinyl alcohol)/silica film for radiative cooling [J]. Advanced Composites and Hybrid Materials, 2022,5:1 966-1975. |
10 | 程喜慧, 陈 萌, 窦跃杰, 等. 辐射制冷功能纺织品的研究进展 [J]. 毛纺科技, 2024,52:132⁃137. |
CHENG X H, CHEN M, et al. Research progress of textiles with radiative cooling performance [J]. Wool Textile Journal, 2024,52:132⁃137. | |
11 | 潘毕成, 张佳文, 杨孝全, 等. 被动式日间辐射制冷超疏水涤纶织物的制备及其性能 [J]. 浙江理工大学学报(自然科学), 2024,51:55⁃62. |
PAN B C, ZHANG J W, YANG X Q, et al. Preparation and performance of superhydrophobic polyester fabrics for passive daytime radiative cooling[J]. Journal of Zhejiang Sci⁃Tech University, 2024,51:55⁃62. | |
12 | Chae D, Son S, Liu Y, et al. High⁃performance daytime radiative cooler and near⁃ideal selective emitter enabled by transparent sapphire substrate [J]. Advanced Science, 2020,7: 2001577. |
13 | Zhou Y, Song H, Liang J, et al. A polydimethylsiloxane⁃coated metal structure for all⁃day radiative cooling [J]. Nature Sustainability, 2019,2:718⁃724. |
14 | Kou J L, Jurado Z, Chen Z, et al. Daytime radiative cooling using near⁃black infrared emitters [J]. ACS Photonics, 2017,4:626⁃630. |
15 | Raman A P, Anoma M A, Zhu L, et al. Passive radiative cooling below ambient air temperature under direct sunlight [J]. Nature, 2014,515:540⁃544. |
16 | Chae D, Kim M, Jung P H, et al. Spectrally selective inorganic⁃based multilayer emitter for daytime radiative cooling [J]. ACS Applied Materials & Interfaces, 2020,12:8 073⁃8 081. |
17 | Ma H, Yao K, Dou S, et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high⁃performance all⁃day radiative cooling [J]. Solar Energy Materials and Solar Cells, 2020,212: 110584. |
18 | Bao H, Yan C, Wang B, et al. Double⁃layer nanoparticle⁃based coatings for efficient terrestrial radiative cooling [J]. Solar Energy Materials and Solar Cells, 2017,168:78⁃84. |
19 | Yu X X, Chan J Q, Chen C. Review of radiative cooling materials: performance evaluation and design approaches[J]. Nano Energy, 2021,88: 106259. |
20 | Rephaeli E, Raman A, Fan S. Ultrabroadband photonic structures to achieve high⁃performance daytime radiative cooling[J]. Nano Letters, 2013,13:1 457⁃1 461. |
21 | Li T, Zhai Y, He S M, et al. A radiative cooling structural material [J]. Science, 2019,364:760. |
22 | Yu S X, Zhang Q, Wang Y F, et al. Photonic⁃structure colored radiative coolers for daytime subambient cooling[J]. Nano Letters, 2022,22:4 925⁃4 932. |
23 | He J J, Zhang Q Y, Zhou Y Y, et al. Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling [J]. ACS Nano, 2024,18: 11 120⁃11 129. |
24 | Liu R, Wang S, Zhou Z, et al. Materials in radiative cooling technologies [J]. Advanced Materials, 2024: 2401577. |
25 | Zou C, Ren G, Hossain M M, et al. Metal⁃loaded dielectric resonator metasurfaces for radiative cooling [J]. Advanced Optical Materials, 2017,5: 1700460. |
26 | Hossain M M, Jia B, Gu M. A Metamaterial emitter for highly efficient radiative cooling [J]. Advanced Optical Materials, 2015,3:1 047⁃1 051. |
27 | Jeong S Y, Tso C Y, Ha J, et al. Field investigation of a photonic multi⁃layered TiO2 passive radiative cooler in sub⁃tropical climate [J]. Renewable Energy, 2020,146:44⁃55. |
28 | Zhao X, Li T, Xie H, et al. A solution⁃processed radiative cooling glass [J]. Science, 2023,382:684⁃691. |
29 | Li T, Sun H, Yang M, et al. All⁃ceramic, compressible and scalable nanofibrous aerogels for subambient daytime radiative cooling [J]. Chemical Engineering Journal, 2023,452: 139518. |
30 | Zhao J, Meng Q, Li Y, et al. Structural porous ceramic for efficient daytime subambient radiative cooling [J]. ACS Applied Materials & Interfaces, 2023,15:47 286⁃47 293. |
31 | Tian Y, Shao H, Liu X, et al. Superhydrophobic and recyclable cellulose⁃fiber⁃based composites for high⁃efficiency passive radiative cooling [J]. ACS Applied Materials & Interfaces, 2021,13:22 521⁃22 530. |
32 | Wu X E, Wang Y, Liang X, et al. Durable radiative cooling multilayer silk textile with excellent comprehensive performance [J]. Advanced Functional Materials, 2023,34:2313539. |
33 | Chen Y H, Hwang C W, Chang S W, et al. Eco⁃friendly transparent silk fibroin radiative cooling film for thermal management of optoelectronics [J]. Advanced Functional Materials, 2023,33: 2301924. |
34 | Xu Y, Zhang X, Li Y, et al. Radiative cooling face mask based on mixed micro⁃ and nanofibrous fabric [J]. Chemical Engineering Journal, 2024,481: 148722. |
35 | Son S, Liu Y, Chae D, et al. Cross⁃linked porous polymeric coating without a metal⁃reflective layer for sub⁃ambient radiative cooling [J]. ACS Applied Materials & Interfaces, 2020,12:57 832⁃57 839. |
36 | Liu B, Xue C, Zhong H, et al. Multi⁃bioinspired self⁃cleaning energy⁃free cooling coatings [J]. Journal of Materials Chemistry A, 2021,9:24 276⁃24 282. |
37 | Tian Q, Tu X, Yang L, et al. Super⁃large⁃scale hierarchically porous films based on self⁃assembled eye⁃like air pores for high⁃performance daytime radiative cooling [J]. Small, 2022,18: 2205091. |
38 | Yang Z, Zhang J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all⁃day passive cooling [J]. ACS Applied Materials & Interfaces, 2021,13:43 387⁃43 395. |
39 | Yang M, Zou W, Guo J, et al. Bioinspired “skin” with cooperative thermo⁃optical effect for daytime radiative cooling [J]. ACS Applied Materials & Interfaces, 2020,12:25 286⁃25 293. |
40 | Meng S, Long L S, Wu Z X, et al. Scalable dual⁃layer film with broadband infrared emission for sub⁃ambient daytime radiative cooling [J]. Solar Energy Materials and Solar Cells, 2020,208: 110393. |
41 | Aili A, Wei Z Y, Chen Y Z, et al. Selection of polymers with functional groups for daytime radiative cooling [J]. Materials Today Physics, 2019,10: 100127. |
42 | Xue X, Qiu M, Li Y W, et al. Creating an eco⁃friendly building coating with smart subambient radiative cooling [J]. Advanced Materials, 2020,32: 1906751. |
43 | Li J Y, Fu Y, Zhou J, et al. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics [J]. Science Advances, 2023,9: 1837. |
44 | Xiong L H, Wei Y, Chen C L, et al. Thin lamellar films with enhanced mechanical properties for durable radiative cooling [J]. Nature Communications, 2023,14: 6 129. |
45 | Wang X, Liu X, Li Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling [J]. Advanced Functional Materials, 2020,30: 1907562. |
46 | Liu Y, Son S, Chae D, et al. Acrylic membrane doped with Al<sub>2</sub>O<sub>3</sub> nanoparticle resonators for zero⁃energy consuming radiative cooling [J]. Solar Energy Materials and Solar Cells, 2020,213:110561. |
47 | Gentle A R, Smith G B. Radiative heat pumping from the earth using surface phonon resonant nanoparticles[J]. Nano Letters, 2010,10:373⁃379. |
48 | Liu Y, Bai A, Fang Z, et al. A pragmatic bilayer selective emitter for efficient radiative cooling under direct sunlight [J]. Materials, 2019,12:1 208. |
49 | Zeng S, Pian S, Su M, et al. Hierarchical⁃morphology metafabric for scalable passive daytime radiative cooling [J]. Science, 2021,373:692. |
50 | Jiang L H, Gong M T, Sun J J, et al. The design and performance research of PTFE/PVDF/PDMS superhydrophobic radiative cooling composite coating with high infrared emissivity [J]. Materials Today Communications, 2024,38: 108406. |
51 | Xie D, Yang Z, Liu X, et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus [J]. Soft Matter. 2019,15:4 294⁃4 300. |
52 | 阳润恒, 安 顺, 尚 文, 等. 仿生辐射制冷的研究进展 [J]. 物理学报, 2022,71:155⁃162. |
YANG R, AN S, SHANG W, et al. Research progress of bio⁃inspired radiative cooling [J]. Acta physica Sinica, 2022,71:155⁃162. | |
53 | Shi N N, Tsai C C, Camino F, et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants [J]. Science, 2015,349:298⁃301. |
54 | Lin K, Chen S, Zeng Y, et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity [J]. Science, 2023,382:691⁃697. |
55 | Zhang H, Ly KCS, Liu X, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling [J]. Proceedings of the National Academy of Sciences, 2020,117:14 657⁃14 666. |
56 | Zhu B, Li W, Zhang Q, et al. Subambient daytime radiative cooling textile based on nanoprocessed silk [J]. Nature Nanotechnology, 2021,16:1342. |
57 | Huang M C, Yang M, Guo X J, et al. Scalable multifunctional radiative cooling materials [J]. Progress in Materials Science, 2023,137: 101144. |
58 | Wang Y, Wang T, Liang J, et al. Controllable⁃morphology polymer blend photonic metafoam for radiative cooling [J]. Materials Horizons, 2023,10:5 060⁃5 070. |
59 | 张玉博. 用于建筑辐射制冷涂层的材料制备与结构研究 [D]. 宜昌:三峡大学, 2021. |
60 | 周振贵. 辐射控温复合薄膜的设计及其在节能窗中的应用研究 [D].武汉:华中科技大学, 2022. |
61 | Feng C, Yang P, Liu H, et al. Bilayer porous polymer for efficient passive building cooling [J]. Nano Energy, 2021,85: 105971. |
62 | Liu X, Zhang M, Hou Y, et al. Hierarchically superhydrophobic stereo⁃complex poly (Lactic Acid) aerogel for daytime radiative cooling [J]. Advanced Functional Materials, 2022,32: 2207414. |
63 | Dong Y, Meng W F, Wang F Q, et al. “Warm in winter and cool in summer”: scalable biochameleon inspired temperature⁃adaptive coating with easy preparation and construction [J]. Nano Letters, 2023,23:9 034⁃9 041. |
64 | Zhu L, Raman A, Wang K X, et al. Radiative cooling of solar cells [J]. Optica, 2014,1:32⁃38. |
65 | Zhu L, Raman A P, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:12 282⁃12 287. |
66 | Li W, Shi Y, Chen K, et al. A comprehensive photonic approach for solar cell cooling [J]. ACS Photonics, 2017,4:774⁃782. |
67 | Shi S K, Lv P F, Valenzuela C, et al. Scalable bacterial cellulose⁃based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting [J]. Small, 2023,19:2301957. |
68 | Liu X, Li Y, Pan Y, et al. A shish⁃kebab superstructure film for personal radiative cooling [J]. ACS Applied Materials & Interfaces, 2023,15:17 188⁃17 194. |
69 | 杨东岭. 仿生人体皮肤辐射制冷面料的制备与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2022. |
70 | 侯艺. 超疏水日间被动辐射制冷多孔结构的构筑及其在织物上的应用 [D]. 杭州:浙江理工大学, 2022. |
71 | Hsu P C, Song A Y, Catrysse P B,et al. Radiative human body cooling by nanoporous polyethylene textile [J]. Science, 2016,353:1 019⁃1 023. |
72 | Cai L, Peng Y, Xu J, et al. Temperature regulation in colored infrared⁃transparent polyethylene textiles [J]. Joule, 2019,3:1 478⁃1 486. |
73 | Peng Y C, Chen J, Song A Y, et al. Nanoporous polyethylene microfibres for large⁃scale radiative cooling fabric [J]. Nature Sustainability, 2018,1:105⁃112. |
74 | Xi Z Y, Li S, Yu L, et al. All⁃day freshwater harvesting by selective solar absorption and radiative cooling [J]. ACS Applied Materials & Interfaces, 2022,14:26 255⁃26 263. |
75 | Yang R, Niu D, Pu J H, et al. Passive all⁃day freshwater harvesting through a transparent radiative cooling film [J]. Applied Energy, 2022,325: 119801. |
76 | Huang X, Mandal J, Xu J, et al. Passive freezing desalination driven by radiative cooling [J]. Joule, 2022,6:2 762⁃2 775. |
77 | Chen Z, Dong M, Wang C. Passive interfacial photothermal evaporation and sky radiative cooling assisted all⁃day freshwater harvesting: system design, experiment study, and performance evaluation [J]. Applied Energy, 2024,355:122254. |
78 | Haechler I, Park H, Schnoering G, et al. Exploiting radiative cooling for uninterrupted 24⁃hour water harvesting from the atmosphere [J]. Science Advances, 2021,7: eabf3978. |
79 | 张一涛. 基于辐射制冷技术的新型发电装置设计 [D]. 南京:东南大学, 2022. |
80 | Raman A P, Li W, Fan S. Generating light from darkness [J]. Joule, 2019,3:2 679⁃2 686. |
81 | Ishii S, Dao T D, Nagao T. Radiative cooling for continuous thermoelectric power generation in day and night [J]. Applied Physics Letters, 2020,117:013901. |
82 | Wang C, Chen H, Jiang Z, et al. Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24⁃hour power⁃generation [J]. Applied Energy, 2023,331: 120425. |
[1] | JIA Xuan, FU Chenxing, ZHANG Junping, LI Mingxiao, LI Xueqi, LIU Xiaopei. Research Status and Application Prospect of Degradable Liquid Mulching Films [J]. China Plastics, 2020, 34(12): 110-118. |
[2] | . Research Progress in Multi-functionalization of Polymer/Graphene Composites [J]. China Plastics, 2018, 32(06): 10-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||