京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (8): 75-82.DOI: 10.19491/j.issn.1001-9278.2025.08.012
• Processing and Application • Previous Articles Next Articles
SHANG Yunlong1(), WANG Donghao1, REN Zhibin2(
)
Received:
2024-08-19
Online:
2025-08-26
Published:
2025-07-30
CLC Number:
SHANG Yunlong, WANG Donghao, REN Zhibin. Storage stability of wet asphalt rubber: A comprehensive review[J]. China Plastics, 2025, 39(8): 75-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2025.08.012
[1] | Zhang S L, Xin Z X, Zhang Z X, et al. Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder[J]. Waste Management, 2009, 29(5): 1 480⁃1 485. |
[2] | Ramarad S, Khalid M, Ratnam C T, et al. Waste tire rubber in polymer blends: A review on the evolution, properties and future[J]. Progress in Materials Science, 2015, 72: 100⁃140. |
[3] | Fazli A, Rodrigue D. Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers[J]. Materials, 2020, 13(3): 782. |
[4] | Karger⁃Kocsis J, Meszaros L, Barany T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers[J]. Journal of Materials Science, 2013, 48(1): 1⁃38. |
[5] | Kakroodi A R, Rodrigue D. Reinforcement of maleated polyethylene/ground tire rubber thermoplastic elastomers using talc and wood flour[J]. Journal of Applied Polymer Science, 2014, 131(8): 40195. |
[6] | Valadares F, Bravo M, de Brito J. Concrete with used tire rubber aggregates: mechanical performance[J]. ACI Materials Journal, 2012, 109(3): 283⁃292. |
[7] | Ahmad J, Zhou Z, Majdi A, et al. Overview of concrete performance made with waste rubber tires: A step toward sustainable concrete[J]. Materials, 2022, 15(16): 5518. |
[8] | 马涛, 陈葱琳, 张阳, 等. 胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报,2021,34: 1⁃16. |
MA T, CHEN C L, ZHANG Y,et al. Development of using crumb rubber in asphalt modification:a review[J]. China Journal of Highway and Transport,2021,34: 1⁃16. | |
[9] | 钟献科. 不同制备工艺的温拌橡胶沥青性能[J]. 公路交通科技, 2024, 41(03): 26⁃34. |
ZHONG X. Performance of warm⁃mix rubber asphalt with different preparation processes[J]. Journal of Highway and Transportation Research and Development, 2024, 41(03): 26⁃34. | |
[10] | 王国清, 王瑞颖, 秦禄生, 等. 废旧轮胎胶粉级配对橡胶沥青性能的影响[J]. 合成橡胶工业,2024,47: 72⁃76. |
WANG G, WANG R, QlN L,et al. Effect of waste tire rubber powder grade on performance of rubber asphalts[J]. China Synthetic Rubber Industry,2024,47: 72⁃76. | |
[11] | Ibrahim B, Wiranata A, Zahrina I, et al. Phase separation study on the storage of technically specification natural rubber modified bitumen[J]. Applied Sciences⁃Basel, 2024, 14(8): 3179. |
[12] | Zhang B, Xi M, Zhang D, et al. The effect of styrene⁃butadiene⁃rubber/montmorillonite modification on the characteristics and properties of asphalt[J]. Construction and Building Materials, 2009, 23(10): 3 112⁃3 117. |
[13] | 王春节, 王大伟, 张磊, 等. 低温橡胶粉碎技术发展综述[J]. 中国橡胶, 2012, 28(02): 39⁃43. |
WANG C, WANG D, ZHANG L, et al. A review on the development of low⁃temperature rubber pulverization technology[J]. China Rubber, 2012, 28(02): 39⁃43. | |
[14] | 任志彬. 湿法橡胶沥青存储稳定性改良研究及其机理分析[D].华南理工大学,2020. |
[15] | Hou W. Experimental study on impact of production process parameters on rubber asphalt performance[C]// Progress in Industrial and Civil Engineering, Pts. Stafa⁃Zurich: Trans Tech Publications Ltd, 2012: 3 629⁃3 633. |
[16] | 贾皓东. SBS改性沥青设备关键技术研究[D].长安大学,2018. |
[17] | Lo Presti D. Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review[J]. Construction and Building Materials, 2013, 49: 863⁃881. |
[18] | Hassan N A, Airey G D, Yusoff N I M, et al. Microstructural characterisation of dry mixed rubberised asphalt mixtures[J]. Construction and Building Materials, 2015, 82: 173⁃183. |
[19] | Liang M, Xin X, Fan W, et al. Viscous properties, storage stability and their relationships with microstructure of tire scrap rubber modified asphalt[J]. Construction and Building Materials, 2015, 74: 124⁃131. |
[20] | Farina A, Zanetti M C, Santagata E, et al. Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement[J]. Resources Conservation and Recycling, 2017, 117: 204⁃212. |
[21] | Guo F, Zhang J, Pei J, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. |
[22] | Yu H, Leng Z, Zhang Z, et al. Selective absorption of swelling rubber in hot and warm asphalt binder fractions[J]. Construction and Building Materials, 2020, 238: 117727. |
[23] | Yu J, Ren Z, Yu H, et al. Modification of asphalt rubber with nanoclay towards enhanced storage stability[J]. Materials, 2018, 11(11): 2093. |
[24] | Perez⁃Lepe A, Martinez⁃Boza F J, Gallegos C. High temperature stability of different polymer⁃modified bitumens: A rheological evaluation[J]. Journal of Applied Polymer Science, 2007, 103(2): 1 166⁃1 174. |
[25] | Sienkiewicz M, Borzedowska⁃Labuda K, Wojtkiewicz A, et al. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review[J]. Fuel Processing Technology, 2017, 159: 272⁃279. |
[26] | Moreno⁃Navarro F, Sol⁃Sanchez M, Rubio⁃Gamez M C, et al. The use of additives for the improvement of the mechanical behavior of high modulus asphalt mixes[J]. Construction and Building Materials, 2014, 70: 65⁃70. |
[27] | Liu H, Chen Z, Wang W, et al. Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive[J]. Construction and Building Materials, 2014, 67: 225⁃233. |
[28] | Gonzalez V, Martinez⁃Boza F J, Gallegos C, et al. A study into the processing of bitumen modified with tire crumb rubber and polymeric additives[J]. Fuel Processing Technology, 2012, 95: 137⁃143. |
[29] | Leng Z, Tan Z, Yu H, et al. Improvement of storage stability of SBS⁃modified asphalt with nanoclay using a new mixing method[J]. Road Materials and Pavement Design, 2019, 20(7): 1 601⁃1 614. |
[30] | Abdelrahman M, Katti D R, Ghavibazoo A, et al. Engineering physical properties of asphalt binders through nanoclay⁃asphalt interactions[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014099. |
[31] | Ghavibazoo A, Abdelrahman M. Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder[J]. International Journal of Pavement Engineering, 2013, 14(5): 517⁃530. |
[32] | Yu J, Wang L, Zeng X, et al. Effect of montmorillonite on properties of styrene⁃butadiene⁃styrene copolymer modified bitumen[J]. Polymer Engineering and Science, 2007, 47(9): 1 289⁃1 295. |
[33] | Galooyak S S, Dabir B, Nazarbeygi A E, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites[J]. Construction and Building Materials, 2010, 24(3): 300⁃307. |
[34] | Loeber L, Muller G, Morel J, et al. Bitumen in colloid science: a chemical, structural and rheological approach[J]. Fuel, 1998, 77(13): 1 443⁃1 450. |
[35] | Jeong K D, Lee S J, Amirkhanian S N, et al. Interaction effects of crumb rubber modified asphalt binders[J]. Construction and Building Materials, 2010, 24(5): 824⁃831. |
[36] | Samieadel A, Schimmel K, Fini E H. Comparative life cycle assessment (LCA) of bio⁃modified binder and conventional asphalt binder[J]. Clean Technologies and Environmental Policy, 2018, 20(1): 191⁃200. |
[37] | Dong Z, Zhou T, Luan H, et al. Performance evaluation of bio⁃based asphalt and asphalt mixture and effects of physical and chemical modification[J]. Road Materials and Pavement Design, 2020, 21(6): 1 470⁃1 489. |
[38] | Yang X, You Z, Mills⁃Beale J. Asphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheology[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014157. |
[39] | Dong R, Zhao M, Xia W, et al. Chemical and microscopic investigation of co⁃pyrolysis of crumb tire rubber with waste cooking oil at mild temperature[J]. Waste Management, 2018, 79: 516⁃525. |
[40] | Lei Y, Wang H, Fini E H, et al. Evaluation of the effect of bio⁃oil on the high⁃temperature performance of rubber modified asphalt[J]. Construction and Building Materials, 2018, 191: 692⁃701. |
[41] | Yu J, Ren Z, Gao Z, et al. Recycled heavy bio oil as performance enhancer for rubberized bituminous binders[J]. Polymers, 2019, 11(5): 800. |
[42] | Ren Z, Huang L, Li Z, et al. Effect of reclaimed bio⁃oil and waste crumb rubber on bitumen viscoelasticity[J]. International Journal of Pavement Engineering, 2022, 24(2):1⁃11. |
[43] | Fini E H, Oldham D J, Abu⁃Lebdeh T. Synthesis and characterization of biomodified rubber asphalt: sustainable waste management solution for scrap tire and swine manure[J]. Journal of Environmental Engineering, 2013, 139(12): 1 454⁃1 461. |
[44] | Zhou T, Yu F, Li L, et al. Swelling⁃degradation dynamic evolution behaviors of bio⁃modified rubberized asphalt under thermal conditions[J]. Journal of Cleaner Production, 2023, 426: 139061. |
[45] | Kim H, Lee S J. Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1 975⁃1 978. |
[46] | Dong R, Zhao M. Research on the pyrolysis process of crumb tire rubber in waste cooking oil[J]. Renewable Energy, 2018, 125: 557⁃567. |
[47] | Kabir S F, Mousavi M, Fini E H. Selective adsorption of bio⁃oils’ molecules onto rubber surface and its effects on stability of rubberized asphalt[J]. Journal of Cleaner Production, 2020, 252: 119856. |
[48] | Zhou T, Kabir S F, Cao L, et al. Comparing effects of physisorption and chemisorption of bio⁃oil onto rubber particles in asphalt[J]. Journal of Cleaner Production, 2020, 273: 123112. |
[49] | Aljarmouzi A, Dong R. Sustainable asphalt rejuvenation by using waste tire rubber mixed with waste oils[J]. Sustainability, 2022, 14(14): 8246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||