京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (4): 60-69.DOI: 10.19491/j.issn.1001-9278.2022.04.011
• Processing and Application • Previous Articles Next Articles
SONG Lijian1, ZHANG Youchen1(), ZUO Xiahua1, ZHANG Zhenghe1, AN Ying1, YANG Weimin1,2, TAN Jing1,2, CHENG Lisheng1,2(
)
Received:
2021-11-08
Online:
2022-04-26
Published:
2022-04-24
CLC Number:
SONG Lijian, ZHANG Youchen, ZUO Xiahua, ZHANG Zhenghe, AN Ying, YANG Weimin, TAN Jing, CHENG Lisheng. Research progress on interfacial thermal transport controlled by self⁃assembled monolayers[J]. China Plastics, 2022, 36(4): 60-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2022.04.011
1 | LOSEGO M D, GRADY M E, SOTTOS N R, et al. Effects of chemical bonding on heat transport across interfaces [J]. Nat Mater, 2012, 11(6): 502⁃506. |
2 | SHENOGINA N, GODAWAT R, KEBLINSKI P, et al. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces [J]. Phys Rev Lett, 2009, 102(15): 156101. |
3 | KAWAGOE Y, SURBLYS D, MATSUBARA H, et al. Cross⁃plane and in⁃plane heat conductions in layer⁃by⁃layer membrane: molecular dynamics study [J]. Langmuir, 2020, 36(23): 6 482⁃6 493. |
4 | HE J L, ZHANG L, LIU L. Improving thermal conduction across cathode/electrolyte interfaces in solid⁃state lithium⁃ion batteries by hierarchical hydrogen⁃bond network [J]. Materials & Design, 2020, 194. |
5 | SAHA L C, KIKUGAWA G. Heat Conduction Performance over a poly(ethylene glycol) self⁃assembled monolayer/water interface: a molecular dynamics study [J]. The Journal of Physical Chemistry B, 2021, 125(7): 1 896⁃1 905. |
6 | WEI X, ZHANG T, LUO T. Thermal energy transport across hard⁃soft interfaces [J]. Acs Energy Lett, 2017, 2(10): 2 283⁃2 292. |
7 | YANG W, LI T, ZHOU H, et al. Electrochemical and anti⁃corrosion properties of octadecanethiol and benzotriazole binary self⁃assembled monolayers on copper [J]. Electrochimica Acta, 2016, 220: 245⁃251. |
8 | LI J, CAO W, LI J, et al. Fluorination to enhance superlubricity performance between self⁃assembled monolayer and graphite in water [J]. Journal of Colloid and Interface Science, 2021, 596: 44⁃53. |
9 | YANG J, ZHOU M, LIU J, et al. Fabrication and tribological properties of self⁃assembled monolayers of alkanethiols on nickel substrates [J]. Applied Surface Science, 2021, 559: 149963. |
10 | MEI Y, FOGEL D, CHEN J, et al. Interface engineering to enhance charge injection and transport in solution⁃deposited organic transistors [J]. Org Electron, 2017, 50: 100⁃105. |
11 | SCHMALTZ T, SFORAZZINI G, REICHERT T, et al. Self⁃assembled monolayers as patterning tool for organic electronic devices [J]. Adv Mater, 2017, 29(18): 1605286. |
12 | HENRY A, CHEN G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations [J]. Phys Rev Lett, 2008, 101(23): 235502. |
13 | 刘圣恭. 超倍热拉伸超高分子量聚乙烯的结构及性能研究 [D]. 株洲; 湖南工业大学, 2019. |
14 | SUN F Y, ZHANG T, JOBBINS M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard⁃soft material interfaces [J]. Adv Mater, 2014, 26(35): 6 093⁃6 099. |
15 | GUO Y T, SURBLYS D, MATSUBARA H, et al. Molecular dynamics study on the effect of long⁃chain surfactant adsorption on interfacial heat transfer between a polymer liquid and silica surface [J]. J Phys Chem C, 2020, 124(50): 27 558⁃27 570. |
16 | GOICOCHEA J V, HU M, MICHEL B, et al. Surface functionalization mechanisms of enhancing heat transfer at solid⁃liquid interfaces [J]. J Heat Trans⁃T Asme, 2011, 133(8). |
17 | 樊弘昭. 有机半导体异质结构纳米尺度界面热输运特性研究 [D].济南:山东大学, 2021. |
18 | KIKUGAWA G, OHARA T, KAWAGUCHI T, et al. A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid [J]. Int J Heat Mass Tran, 2014, 78: 630⁃635. |
19 | ZHANG L, LIU L. Polymeric self⁃assembled monolayers anomalously improve thermal transport across graphene/polymer interfaces [J]. Acs Appl Mater Inter, 2017, 9(34): 28 949⁃28 958. |
20 | WANG Y L, CAO Y, ZHOU K, et al. Assessment of self⁃assembled monolayers as high⁃performance thermal interface materials [J]. Adv Mater Interfaces, 2017, 4(15). |
21 | ZHANG L, LIU L. Hierarchically hydrogen⁃bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance [J]. Nanoscale, 2019, 11(8): 3 656⁃3 664. |
22 | KUANG S Y, GEZELTER J D. Simulating interfacial thermal conductance at metal⁃solvent interfaces: the role of chemical capping agents [J]. J Phys Chem C, 2011, 115(45): 22 475⁃22 483. |
23 | DUDA J C, SALTONSTALL C B, NORRIS P M, et al. Assessment and prediction of thermal transport at solid⁃self⁃assembled monolayer junctions [J]. J Chem Phys, 2011, 134(9). |
24 | MEIER T, MENGES F, NIRMALRAJ P, et al. Length⁃dependent thermal transport along molecular chains [J]. Phys Rev Lett, 2014, 113(6). |
25 | HUNG S W, KIKUGAWA G, SHIOMI J. Mechanism of temperature dependent thermal transport across the interface between self⁃assembled monolayer and water [J]. J Phys Chem C, 2016, 120(47): 26 678⁃26 685. |
26 | HARIKRISHNA H, DUCKER W A, HUXTABLE S T. The influence of interface bonding on thermal transport through solid⁃liquid interfaces [J]. Appl Phys Lett, 2013, 102(25): 251606. |
27 | GOICOCHEA J V, HU M, MICHEL B, et al. Surface functionalization mechanisms of enhancing heat transfer at solid⁃liquid interfaces [J]. Journal of Heat Transfer, 2011, 133(8). |
28 | STOCKER K M, GEZELTER J D. Simulations of heat conduction at thiolate⁃capped gold surfaces: the role of chain length and solvent penetration [J]. The Journal of Physical Chemistry C, 2013, 117(15): 7 605⁃7 612. |
29 | SUN F, ZHANG T, JOBBINS M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard⁃soft material interfaces [J]. Adv Mater, 2014, 26(35): 6 093⁃6 099. |
30 | TIAN Z T, MARCONNET A, CHEN G. Enhancing solid⁃liquid interface thermal transport using self⁃assembled monolayers [J]. Appl Phys Lett, 2015, 106(21). |
31 | ACHARYA H, MOZDZIERZ N J, KEBLINSKI P, et al. How chemistry, nanoscale roughness, and the direction of heat flow affect thermal conductance of solid⁃water interfaces [J]. Ind Eng Chem Res, 2012, 51(4): 1 767⁃1 773. |
32 | WEI X F, ZHANG T, LUO T F. Molecular fin effect from heterogeneous self⁃assembled kikugawa monolayer enhances thermal conductance across hard⁃soft interfaces [J]. Acs Appl Mater Inter, 2017, 9(39): 33 740⁃33 748. |
33 | KIKUGAWA G, OHARA T, KAWAGUCHI T, et al. A molecular dynamics study on heat transfer characteristics over the interface of self⁃assembled monolayer and water solvent [J]. J Heat Trans⁃T Asme, 2014, 136(10). |
34 | HUANG D Z, MA R M, ZHANG T, et al. Origin of hydrophilic surface functionalization⁃induced thermal conductance enhancement across solid⁃water interfaces [J]. Acs Appl Mater Inter, 2018, 10(33): 28 159⁃28 165. |
35 | ZHANG T, GANS⁃FORREST A R, LEE E, et al. Role of hydrogen bonds in thermal transport across hard/soft material interfaces [J]. Acs Appl Mater Inter, 2016, 8(48): 33 326⁃33 334. |
36 | FAN H Z, WANG M, HAN D, et al. Enhancement of interfacial thermal transport between metal and organic semiconductor using self⁃assembled monolayers with different terminal groups [J]. J Phys Chem C, 2020, 124(31): 16 748⁃16 757. |
37 | GU J, RUAN K. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics [J]. Nano⁃Micro Letters, 2021, 13(1): 110. |
38 | SUN Z, ZHAO Z K, ZHANG Y Y, et al. Mechanical, tribological and thermal properties of injection molded short carbon fiber/expanded graphite/polyetherimide composites [J]. Composites Science and Technology, 2021, 201: 108498. |
39 | GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 108134. |
40 | RUAN K, SHI X, GUO Y, et al. Interfacial thermal resistance in thermally conductive polymer composites: a review [J]. Composites Communications, 2020, 22: 100518. |
41 | LU J X, YUAN K P, SUN F Y, et al. Self⁃assembled monolayers for the polymer/semiconductor interface with improved interfacial thermal management [J]. Acs Appl Mater Inter, 2019, 11(45): 42 708⁃42 714. |
42 | YUAN C, HUANG M Y, CHENG Y H, et al. Bonding⁃induced thermal transport enhancement across a hard/soft material interface using molecular monolayers [J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7 352⁃7 358. |
43 | QUILES⁃DíAZ S, MARTíNEZ⁃RUBí Y, GUAN J, et al. Enhanced thermal conductivity in polymer nanocomposites via covalent functionalization of boron nitride nanotubes with short polyethylene chains for heat⁃transfer applications [J]. ACS Applied Nano Materials, 2019, 2(1): 440⁃451. |
44 | 王鑫煜,樊弘昭. 一种金属⁃SAM⁃有机半导体复合结构及制备方法和电子器件中的应用:中国, CN111477744A [P].2020⁃07⁃31. |
45 | 贾美玲, 陈 明, 张道书,等. 一种提高无机金属材料和高分子聚合物之间界面热传导的方法:中国, CN111058071A [P].2020⁃04⁃24. |
[1] | Yanghui WANG, Yulu MA, Linsheng XIE, Guo SONG, Huihao ZHU. Establishment and Application of Thermally Conductive Prediction Model for High‑Filled Modified Composites [J]. China Plastics, 2020, 34(7): 49-55. |
[2] | . Flame Retardancy of Phosphate/Inorganic Flame Retardant Under Microparticle and Mixture Blends [J]. China Plastics, 2013, 27(02): 93-97 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||