京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (10): 127-133.DOI: 10.19491/j.issn.1001-9278.2024.10.022
• Review • Previous Articles Next Articles
TAN Jiani, XU Zhen, OUYANG Yuge()
Received:
2023-12-25
Online:
2024-10-26
Published:
2024-10-21
CLC Number:
TAN Jiani, XU Zhen, OUYANG Yuge. Research progress in thermally conductive composite films based on filled polymers[J]. China Plastics, 2024, 38(10): 127-133.
1 | Qin M, Xu Y, Cao R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge[J]. Advanced functional materials, 2018, 28(45): 1805053. |
2 | 贾程瑛,刘 文,朱阳阳,等.导热纸(膜)的研究进展[J].中国造纸, 2022, 41(5): 88⁃97. |
JIA C Y, LIU W, ZHU Y Y, et al. Thermally conductive paper (films): a review [J].China Paper, 2022, 41(5): 88⁃97. | |
3 | 杨 丹,巩 阳,肖荣林,等.高导热石墨烯薄膜的制备及研究进展[J].广州化工, 2022,50(19): 21⁃22,25. |
YANG D, GONG Y, XIAO R L, et al. Preparation and research progress of graphene thin films with high thermal conductivity[J].Guangzhou Chemical Industry, 2022,50(19): 21⁃22,25. | |
4 | Chen J, Huang X, Zhu Y, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754. |
5 | Thapa A, Wang X, Li W. Synthesis and field emission properties of Cu⁃filled vertically aligned carbon nanotubes[J]. Applied Surface Science, 2021, 537: 148086. |
6 | 高 汕.基于氮化硼纳米片基热管理材料的制备及性能探究[D].桂林: 桂林电子科技大学, 2023. |
7 | Wang Z G, Huang Y F, Zhang G Q, et al. Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10 391⁃10 397. |
8 | Wang Y, Xia S, Xiao G, et al. High⁃loading boron nitride⁃based bio⁃inspired paper with plastic⁃like ductility and metal⁃like thermal conductivity[J]. ACS Applied Materials Interfaces, 2020, 12(11): 13 156⁃13 164. |
9 | 王雪霏.BN/SiO2@MWCNTs/PVDF导热复合材料的制备与性能研究[D].哈尔滨: 哈尔滨理工大学, 2023. |
10 | Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1⁃28. |
11 | 杨贵.聚乙烯醇基导热复合材料的制备与性能研究[D].郑州: 郑州大学, 2021. |
12 | Hu J, Huang Y, Yao Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three⁃dimensional interconnected network of BN[J]. ACS applied materials & interfaces, 2017, 9(15): 13 544⁃13 553. |
13 | An D, Cheng S, Jiang C, et al. A novel environmentally friendly boron nitride/lignosulfonate/natural rubber composite with improved thermal conductivity[J]. Journal of Materials Chemistry C, 2020, 8(14): 4 801⁃4 809. |
14 | Gurijala A, Zando R B, Faust J L, et al. Castable and printable dielectric composites exhibiting high thermal conductivity via percolation⁃enabled phonon transport[J]. Matter, 2020, 2(4): 1 015⁃1 024. |
15 | 张海宝.基于纳米级聚合物基导热复合材料的制备及性能研究[D].合肥: 安徽大学, 2020. |
16 | Shen Z, Feng J. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles[J]. ACS applied materials & interfaces, 2018, 10(28): 24 193⁃24 200. |
17 | Ito H, Sakata M, Hongo C, et al. Cellulose nanofiber nanocomposites with aligned silver nanoparticles[J]. Nanocomposites, 2018, 4(4): 167⁃177. |
18 | 李宗廷.高导热系数陶瓷填充PTFE基复合基板制备与性能研究[D].成都:电子科技大学,2020. |
19 | 梁尔优.聚酰亚胺树脂基导热复合材料研究[D].北京: 北京化工大学, 2023. |
20 | Li J, Wang B, Ge Z, et al. Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper⁃based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability[J]. ACS applied materials & interfaces, 2019, 11(42): 39 088⁃39 099. |
21 | Wang Z G, Yang Y L, Zheng Z L, et al. Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films[J]. Composites Science and Technology, 2020, 194: 108190. |
22 | 谭桂珍,胡子悦,张英明,等.静电纺丝制备MWCNTs/PVA定向导热复合纤维膜[J].化工新型材料, 2023, 51(1): 59⁃64. |
TAN G Z, HU Z Y, ZHANG Y M, et al. Preparation of MWCNTs/PVA constant conductive composite fiber membranes by electrospinning[J].New Chemical Materials, 2023, 51(1): 59⁃64. | |
23 | Houshyar S, Nayak R, Padhye R, et al. Fabrication and characterization of nanodiamond coated cotton fabric for improved functionality[J]. Cellulose, 2019, 26: 5 797⁃5 806. |
24 | Liu X, Gao Y, Shang Y, et al. Non⁃covalent modification of boron nitride nanoparticle⁃reinforced PEEK composite: thermally conductive, interfacial, and mechanical properties[J]. Polymer, 2020, 203: 122763. |
25 | Ou X, Chen S, Lu X, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications, 2021, 23: 100549. |
26 | Wei Q, Yang D. A self⁃healing polyvinyl alcohol⁃based composite with high thermal conductivity and excellent mechanical properties[J]. Composites Communications, 2023, 39: 101561. |
27 | Zhang F, Feng Y, Feng W. Three⁃dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100580. |
28 | Xiao H, Huang Z X, Zhang Z P, et al. Highly thermally conductive flexible copper clad laminates based on sea⁃island structured boron nitride/polyimide composites[J]. Composites Science and Technology, 2022, 230: 109087. |
29 | 邝凤霞.磁调控制备热管理氮化硼/高分子复合材料[D].郑州:郑州大学,2020. |
30 | Cheng S, Guo X, Tan P, et al. Aligning graphene nanoplates coplanar in polyvinyl alcohol by using a rotating magnetic field to fabricate thermal interface materials with high through⁃plane thermal conductivity[J]. Composites Part B: Engineering, 2023, 264: 110916. |
31 | Li M, Ali Z, Wei X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering, 2021, 208: 108599. |
32 | Zhou J A, Xie C Z, Wang R, et al. Ultrahigh in⁃plane thermal conductive epoxy composites by cellulose⁃supported GnPs@PDA skeleton under stress⁃induced orientation strategy[J]. Diamond and Related Materials, 2023, 139: 110340. |
33 | Pradhan S S, Unnikrishnan L, Mohanty S, et al. Thermally conducting polymer composites with EMI shielding: a review[J]. Journal of Electronic Materials, 2020, 49: 1 749⁃1 764. |
34 | Zhang S, Li M, Miao Z, et al. Ice⁃templated graphene in⁃situ loaded boron nitride aerogels for polymer nanocomposites with high thermal management capability[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107 005⁃107 013. |
35 | Hu D, Zhang Z, Liu M, et al. Multifunctional UV⁃shielding nanocellulose films modified with halloysite nanotubes⁃zinc oxide nanohybrid[J]. Cellulose, 2020, 27: 401⁃413. |
36 | Hu J, Hou X, Yang T, et al. Thermal management performance of polyvinyl alcohol composite with boron phosphide decorated reduced graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2022, 155: 106847. |
37 | Wang X, Wu P. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility[J]. ACS applied materials & interfaces, 2019, 11(24): 21 946⁃21 954. |
38 | Wu W, Liu H, Wang Z, et al. Formation of thermal conductive network in boron nitride/polyvinyl alcohol by ice⁃templated self⁃assembly[J]. Ceramics International, 2021, 47(23): 33 926⁃33 929. |
39 | Ruan K, Guo Y, Tang Y, et al. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning⁃hot press technique[J]. Composites Communications, 2018, 10: 68⁃72. |
40 | Yin C G, Ma Y, Liu Z J, et al. Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes[J]. Polymer, 2019, 162: 100⁃107. |
41 | Bai L, Zhang Z M, Pu J H, et al. Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip⁃coated with silver nanowires[J]. Polymer, 2020, 194: 122390. |
42 | Liu B, Li Y, Fei T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution⁃mixing and hot⁃pressing method[J]. Chemical Engineering Journal, 2020, 385: 123829. |
43 | Yu W C, Zhang G Q, Liu Y H, et al. Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks[J]. Chemical Engineering Journal, 2019, 373: 556⁃564. |
44 | Yang G, Zhang X, Pan D, et al. Highly thermal conductive poly (vinyl alcohol) composites with oriented hybrid networks: silver nanowire bridged boron nitride nanoplatelets[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32 286⁃32 294. |
45 | Xu Y, Wang X, Hao Q. A mini review on thermally conductive polymers and polymer⁃based composites[J]. Composites Communications, 2021, 24: 100617. |
46 | Song N, Jiao D, Cui S, et al. Highly anisotropic thermal conductivity of layer⁃by⁃layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS applied materials & interfaces, 2017, 9(3): 2 924⁃2 932. |
47 | Li G, Tian X, Xu X, et al. Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers[J]. Composites Science and Technology, 2017, 138: 179⁃185. |
[1] | WEI Jia, LIU Kai, PENG Lijuan, TIAN Yangyang, ZHAO Lin, LI Yanhong, YANG Peipei, LI Songwei. Research progress in molecularly imprinted polymer sensors in detection of nicotine [J]. China Plastics, 2024, 38(10): 75-80. |
[2] | GAO Wei, XIONG Changyi, HAN Fei, KONG Nizao, YAN Yuanwei. Study on modification and design of thermal conductive and microwave absorbing dual⁃functional powders [J]. China Plastics, 2024, 38(6): 19-24. |
[3] | Xin PENG, Chunguang LONG, Ying PENG. Preparation and Mechanical and Tribological Properties of PEEK/ZA8 Composites [J]. China Plastics, 2020, 34(5): 26-31. |
[4] | . Research Progress in Modification of Heat Resistance and Toughness of Benzoxazine Resin [J]. China Plastics, 2013, 27(07): 8-13. |
[5] | . Research on the Formula System of Injection Molded Foamed PP/Wood-flour Composites [J]. China Plastics, 2010, 24(08): 49-54 . |
[6] | WEN Bian-ying. Research Progress in Functionally Gradient Materials Based on Polymers#br# [J]. China Plastics, 2007, 21(4): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||