京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (12): 163-171.DOI: 10.19491/j.issn.1001-9278.2024.12.025
• Review • Previous Articles Next Articles
LI Shuangyan1,2,3,4(), LU Xinyu1,2,3,4, SU Qiong1,2,3,4(
), ZHAO Mengchi1,2,3,4, Alidan Ruzha Hong1,2,3,4, WANGYupu 1,2,3,4, ZHAO Libin5
Received:
2024-02-25
Online:
2024-12-26
Published:
2024-12-25
CLC Number:
LI Shuangyan, LU Xinyu, SU Qiong, ZHAO Mengchi, Alidan Ruzha Hong, WANGYupu , ZHAO Libin. Research progress in modification and foaming methods of environmentally friendly biomass materials[J]. China Plastics, 2024, 38(12): 163-171.
生物质类型 | 生物质原料 | 改性方法 | 改性剂 | 材料的性能 | |
---|---|---|---|---|---|
纤维素 | 木薯秸秆 | ||||
谷物秸秆 | |||||
油菜籽秸秆 | |||||
木质素 | 杨木、松木和稻壳木质素 | ||||
牛皮纸木质素 | |||||
甘蔗渣 | |||||
淀粉 | 玉米淀粉 | 乳酸 | |||
木薯淀粉 | |||||
高碘酸钾 | |||||
壳聚糖 | 壳聚糖 | ||||
羧甲基壳聚糖 |
生物质类型 | 生物质原料 | 改性方法 | 改性剂 | 材料的性能 | |
---|---|---|---|---|---|
纤维素 | 木薯秸秆 | ||||
谷物秸秆 | |||||
油菜籽秸秆 | |||||
木质素 | 杨木、松木和稻壳木质素 | ||||
牛皮纸木质素 | |||||
甘蔗渣 | |||||
淀粉 | 玉米淀粉 | 乳酸 | |||
木薯淀粉 | |||||
高碘酸钾 | |||||
壳聚糖 | 壳聚糖 | ||||
羧甲基壳聚糖 |
优缺点 | ||||
---|---|---|---|---|
优缺点 | ||||
---|---|---|---|---|
1 | 李建华,黄二梅.双碳背景下合成氨的发展研究[J].现代化工,2023(9):16⁃19+23. |
LI J H, HANG E M.Study on the development of ammonia in a dual⁃carbon context[J].Modern Chemical,2023(9):16⁃19+23 (in Chinese). | |
2 | Falua K J, Pokharel A, Babaei⁃Ghazvini A, et al. Valorization of starch to biobased materials: A review[J]. Polymers, 2022, 14(11): 2 215. |
3 | 苏琼,卢新宇,石小琴,等.无胶秸秆基纤维板的研究进展[J/OL].复合材料学报,1⁃17[2023⁃12⁃30]. |
SU Q, LU X Y, SHI X Q,et al.Research Progress of Glueless Straw⁃based Fiberboards[J/OL].Journal of Composite Materials,1⁃17[2023⁃12⁃30]. | |
4 | 李俊夫.双碳背景下循环经济发展的机遇、挑战与策略[J].现代管理科学,2022,10(4):15⁃23. |
LI J F.Opportunities, Challenges and strategies for the development of circular economy in the context of dual carbon[J].Modern Management Science,2022,10(4):15⁃23 (in Chinese). | |
5 | Wang J, Du W, Zhang Z, et al. Biomass/polyhedral oligomeric silsesquioxane nanocomposites: Advances in preparation strategies and performances[J]. Journal of Applied Polymer Science, 2021, 138(2): 49641. |
6 | 杨洪秀,王 哲,李 琛,等.纤维改性方法对植物纤维发泡缓冲材料性能影响的研究进展[J].中国造纸,2023,42(06):103⁃111. |
YANG H X, WANG Z, LI S,et al.Research progress on the effect of fiber modification methods on the properties of plant fiber foam cushioning materials[J].China National Paper,2023,42(06):103⁃111. | |
7 | Pan Y, Zhou Y, Du X, et al. Preparation of Bio⁃Foam Material from Steam⁃Exploded Corn Straw by In Situ Esterification Modification[J]. Polymers, 2023, 15(9): 2 222. |
8 | Wang Y, Xu H, Huang L, et al. Preparation and properties of Graft⁃Modified Bagasse cellulose/Polylactic acid composites[J]. Journal of Natural Fibers, 2023, 20(1): 2164822. |
9 | Kang C, Li Q, Yi H, et al. EDTAD⁃modified cassava stalks loaded with Fe3O4: Highly efficient removal of Pb 2+ and Zn 2+ from aqueous solution[J]. Environmental Science and Pollution Research, 2021, 28: 6 733⁃6 745. |
10 | Liu X, Wen Y, Qu J, et al. Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification[J]. Carbohydrate polymers, 2019, 211: 257⁃265. |
11 | Miedzianowska J, Masłowski M, Rybiński P, et al. Properties of chemically modified (selected silanes) lignocellulosic filler and its application in natural rubber biocomposites[J]. Materials, 2020, 13(18): 4 163. |
12 | Zhang Q, Ma Y, Qi Z, et al. Effect of alkali modification on the powder flowability of rapeseed straw cellulose fibers[J]. Journal of Natural Fibers, 2023, 20(1): 2151546. |
13 | Chung H, Washburn N R. Chemistry of lignin⁃based materials[J]. Green materials, 2013, 1(3): 137⁃160. |
14 | Balk M, Sofia P, Neffe A T, et al. Lignin, the Lignification Process, and Advanced, Lignin⁃Based Materials[J]. International Journal of Molecular Sciences, 2023, 24(14): 11668. |
15 | Zhang S, Zhao X, Chen P, et al. High⁃performance adhesives modified by demethylated lignin for use in extreme environments[J]. New Journal of Chemistry, 2023, 47(14): 6 721⁃6 729. |
16 | Zou S Lao L P, Li X Y, et al. Lignin⁃based composites with enhanced mechanical properties by acetone fractionation and epoxidation modification[J]. Iscience, 2023, 26(3). |
17 | Han Y, Ma Z, Wang X, et al. Demethylation of ethanol organosolv lignin by Na2SO3 for enhancing antioxidant performance[J]. Sustainable Chemistry and Pharmacy, 2023, 36: 101312. |
18 | Kaur R, Uppal S K, Sharma P. Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins[J]. Sugar tech, 2017, 19: 675⁃680. |
19 | Shorey R, Gupta A, Mekonnen T H. Hydrophobic modification of lignin for rubber composites[J]. Industrial Crops and Products, 2021, 174: 114189. |
20 | Abdulkhani A, Khorasani Z, Hamzeh Y, et al. Valorization of bagasse alkali lignin to water⁃soluble derivatives through chemical modification[J]. Biomass Conversion and Biorefinery, 2022: 1⁃9. |
21 | Kim R J, Kim H S. Development and characterization of potato amylopectin⁃substituted starch materials[J]. Food Science and Biotechnology, 2021, 30(6): 833⁃842. |
22 | Yao X, Lin R, Liang Y, et al. Characterization of acetylated starch nanoparticles for potential use as an emulsion stabilizer[J]. Food Chemistry, 2023, 400: 133873. |
23 | Worzakowska M. Chemical modification of potato starch by graft copolymerization with citronellyl methacrylate[J]. Journal of Polymers and the Environment, 2018, 26: 1 613⁃1 624. |
24 | Li P, He X, Zuo Y, et al. Synthesis and characterization of lactic acid esterified starch by an in⁃situ solid phase method[J]. International Journal of Biological Macromolecules, 2020, 156: 1 316⁃1 322. |
25 | León O, Soto D, Muñoz⁃Bonilla A, et al. Amylose modified starches as superabsorbent systems for release of potassium fertilizers[J]. Journal of Polymers and the Environment, 2021: 1⁃15. |
26 | Clasen S H, Müller C M O, Parize A L, et al. Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction[J]. Carbohydrate polymers, 2018, 180: 348⁃353. |
27 | Oluwasina O O, Olaleye F K, Olusegun S J, et al. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film[J]. International journal of biological macromolecules, 2019, 135: 282⁃293. |
28 | Yang R, Wang H, et al. Application of chitosan⁃based materials in surgical or postoperative hemostasis[J]. Frontiers in Materials, 2022, 9: 994265. |
29 | Chen P, Tang F, et al. Influence of plasticiser type and nanoclay on the properties of chitosan⁃based materials[J]. European Polymer Journal, 2021, 144: 110225. |
30 | Huang Y, Feng L, Zhang Y, et al. Hemostasis mechanism and applications of N‐alkylated chitosan sponge[J]. Polymers for Advanced Technologies, 2017, 28(9): 1 107⁃1 114. |
31 | Sutirman Z A, Sanagi M M, Abd Karim J, et al. New crosslinked⁃chitosan graft poly (N⁃vinyl-2⁃pyrrolidone) for the removal of Cu (II) ions from aqueous solutions[J]. International journal of biological macromolecules, 2018, 107: 891⁃897. |
32 | Chen W C, Chien H W. Enhancing the antibacterial property of chitosan through synergistic alkylation and chlorination[J]. International Journal of Biological Macromolecules, 2022, 217: 321⁃329. |
33 | Liu S, Wang Z, Song P. Free radical graft copolymerization strategy to prepare catechin⁃modified chitosan loose nanofiltration (NF) membrane for dye desalination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4 253⁃4 263. |
34 | Piegat A, Żywicka A, Niemczyk A, et al. Antibacterial activity of N, O⁃acylated chitosan derivative[J]. Polymers, 2020, 13(1): 107. |
35 | Wang L, Wen X, Zhang X, et al. Durable antimicrobial cotton fabric fabricated by carboxymethyl chitosan and quaternary ammonium salts[J]. Cellulose, 2021, 28: 5 867⁃5 879. |
36 | Hu X, Wang T, Li F, et al. Surface modifications of biomaterials in different applied fields[J]. RSC advances, 2023, 13(30): 20 495⁃20 511. |
37 | Arumugham T, AlYammahi J, Rambabu K, et al. Supercritical CO2 pretreatment of date fruit biomass for enhanced recovery of fruit sugars[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102231. |
38 | Wang X, Zhang Y, Jiang H, et al. Fabrication and characterization of nano⁃cellulose aerogels via supercritical CO2 drying technology[J]. Materials Letters, 2016, 183: 179⁃182. |
39 | Ubeyitogullari A, Ciftci O N. Formation of nanoporous aerogels from wheat starch[J]. Carbohydrate Polymers, 2016, 147: 125⁃132. |
40 | Wu Y, Cao F, Jiang H, et al. Preparation and characterization of aminosilane⁃functionalized cellulose nanocrystal aerogel[J]. Materials Research Express, 2017, 4(8): 085303. |
41 | Ho K H, Lu X, Lau S K. In Situ Dispersion of Lignin in Polypropylene via Supercritical CO2 Extrusion Foaming: Effects of Lignin on Cell Nucleation and Foam Compression Properties[J]. Polymers, 2023, 15(8): 1 813. |
42 | Santos⁃Rosales V, Ardao I, Alvarez⁃Lorenzo C, et al. Sterile and dual⁃porous aerogels scaffolds obtained through a multistep supercritical CO2⁃based approach[J]. Molecules, 2019, 24(5): 871. |
43 | Pajnik J, Dikić J, Milovanovic S, et al. Zeolite/Chitosan/Gelatin Films: Preparation, Supercritical CO2 Processing, Characterization, and Bioactivity[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200009. |
44 | Zhang D, Wang L, Zeng H, et al. A three⁃dimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury (II) ions from aqueous solution[J]. Chemical Engineering Journal, 2019, 363: 192⁃202. |
45 | Liu G, Li J, Li X, et al. Preparation and properties of novel superhydrophobic cellulose nanofiber aerogels[J]. Journal of Nanomaterials, 2021, 2021: 1⁃8. |
46 | Ghanadpour M, Wicklein B, Carosio F, et al. All⁃natural and highly flame⁃resistant freeze⁃cast foams based on phosphorylated cellulose nanofibrils[J]. Nanoscale, 2018, 10(8): 4 085⁃4 095. |
47 | Zhou T, Cheng X, Pan Y, et al. Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying[J]. Cellulose, 2019, 26: 1 747⁃1 755. |
48 | Long H, Hu L, Yang F, et al. Enhancing the performance of polylactic acid composites through self⁃assembly lignin nanospheres for fused deposition modeling[J]. Composites Part B: Engineering, 2022, 239: 109968. |
49 | Dragan E S, Ghiorghita C A, Dinu M V, et al. Fabrication of self⁃antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin[J]. Food Hydrocolloids, 2023, 135: 108147. |
50 | Lu Z, Zhou Y, Liu B. Preparation of chitosan microcarriers by high voltage electrostatic field and freeze drying[J]. Journal of bioscience and bioengineering, 2019, 128(4): 504⁃509. |
51 | Rokkonen T, Willberg⁃Keyriläinen P, Ropponen J, et al. Foamability of cellulose palmitate using various physical blowing agents in the extrusion process[J]. Polymers, 2021, 13(15): 2 416. |
52 | Veronese A F, de Souza Rocha T, Franco C M L, et al. Starch–carboxymethyl cellulose (CMC) mixtures processed by extrusion[J]. Starch‐Stärke, 2018, 70(11/12): 1700336. |
53 | Yang P, Yan M, Tian C, et al. Solvent⁃free preparation of thermoplastic bio⁃materials from microcrystalline cellulose (MCC) through reactive extrusion[J]. International Journal of Biological Macromolecules, 2022, 217: 193⁃202. |
54 | Tang Y, Jean M, Pourebrahimi S, et al. Influence of lignin structure change during extrusion on properties and recycling of lignin‐polyethylene thermoplastic composites[J]. The Canadian Journal of Chemical Engineering, 2021, 99: S27⁃S38. |
55 | Sohn J S, Kim H K, Kim S W, et al. Biodegradable foam cushions as ecofriendly packaging materials[J]. Sustainability, 2019, 11(6): 1 731. |
56 | Deng X, Gould M, Ali M A. Fabrication and characterisation of melt⁃extruded chitosan/keratin/PCL/PEG drug⁃eluting sutures designed for wound healing[J]. Materials Science and Engineering: C, 2021, 120: 111696. |
57 | Reichert C L, Bugnicourt E, Coltelli M B, et al. Bio⁃based packaging: Materials, modifications, industrial applications and sustainability[J]. Polymers, 2020, 12(7): 1 558. |
58 | Ediyilyam S, George B, Shankar S S, et al. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications[J]. Polymers, 2021, 13(11): 1680. |
59 | Guo A, Tao X, Kong H, et al. Effects of aluminum hydroxide on mechanical, water resistance, and thermal properties of starch⁃based fiber⁃reinforced composites with foam structures[J]. Journal of Materials Research and Technology, 2023, 23: 1570⁃1583. |
60 | Ren D, Wang Y, Wang H, et al. Fabrication of nanocellulose fibril⁃based composite film from bamboo parenchyma cell for antimicrobial food packaging[J]. International journal of biological macromolecules, 2022, 210: 152⁃160. |
61 | Li T, Zhang Y, et al. Thermoplastic and biodegradable sugarcane lignin⁃based biocomposites prepared via a wholly solvent⁃free method[J]. Journal of Cleaner Production, 2023, 386: 135834. |
62 | Joshi P, Gupta K, Uniyal P, et al. Cassava starch⁃derived aerogels as biodegradable packaging materials[J]. Materials Chemistry and Physics, 2023, 296: 127282. |
63 | Khanzada B, Mirza B, Ullah A. Chitosan based bio⁃nanocomposites packaging films with unique mechanical and barrier properties[J]. Food Packaging and Shelf Life, 2023, 35: 101016. |
64 | Li M E, Zhao H B, Cheng J B, et al. An effective green porous structural adhesive for thermal insulating, flame⁃retardant, and smoke⁃suppressant expandable polystyrene foam[J]. Engineering, 2022, 17: 151⁃160. |
65 | Lujan L, Goñi M L, Martini R E. Cellulose–Chitosan Biodegradable Materials for Insulating Applications[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12 000⁃12 008. |
66 | Breuer R, Zhang Y, Erdmann R, et al. Development and processing of flame retardant cellulose acetate compounds for foaming applications[J]. Journal of Applied Polymer Science, 2020, 137(28): 48863. |
67 | Weng S, Li Z, Bo C, et al. Design lignin doped with nitrogen and phosphorus for flame retardant phenolic foam materials[J]. Reactive and Functional Polymers, 2023, 185: 105535. |
68 | Zhang J, Liu B, Zhou Y, et al. Gelatinized starch⁃furanic hybrid as a biodegradable thermosetting resin for fabrication of foams for building materials[J]. Carbohydrate Polymers, 2022, 298: 120157. |
69 | Jiang X, Zhang J, You F, et al. Chitosan/clay aerogel: Microstructural evolution, flame resistance and sound absorption[J]. Applied Clay Science, 2022, 228: 106624. |
70 | Hasibuan P A Z, Tanjung M, Gea S, et al. Antimicrobial and antihemolytic properties of a CNF/AgNP⁃chitosan film: A potential wound dressing material[J]. Heliyon, 2021, 7(10). |
71 | Zhang S, Li L, Ren X, et al. N⁃halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties[J]. International Journal of Biological Macromolecules, 2020, 161: 1 070⁃1 078. |
72 | Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose⁃based composites for nerve tissue engineering[J]. International Journal of Biological Macromolecules, 2022. |
73 | Zhang Y, Jiang M, Zhang Y, et al. Novel lignin–chitosan–PVA composite hydrogel for wound dressing[J]. Materials Science and Engineering: C, 2019, 104: 110002. |
74 | Delavari M M, Stiharu I. Preparation and Characterization of Eco⁃Friendly Transparent Antibacterial Starch/Polyvinyl Alcohol Materials for Use as Wound⁃Dressing[J]. Micromachines, 2022, 13(6): 960. |
75 | Yang Z, Ye T, Ma F, et al. Preparation of Chitosan/Clay Composites for Safe and Effective Hemorrhage Control[J]. Molecules, 2022, 27(8): 2 571. |
76 | Deshpande P, Wankar S, Mahajan S, et al. Bacterial Cellulose: Natural Biomaterial for Medical and Environmental Applications[J]. Journal of Natural Fibers, 2023, 20(2): 2218623. |
[1] | . Research progress of radiative cooling materials and their applications [J]. , 2025, 39(1): 0-0. |
[2] | WEN Qilin, JIA Xuehua, SUN Yanjun, NIU Siji, CHEN Yinghong, CHEN Ning. Research progress in preparation and applications of biodegradable plastic packaging films [J]. China Plastics, 2024, 38(9): 112-122. |
[3] | CUI Bao, YANG Jianjun, WU Qingyun, WU Mingyuan, ZHANG Jianan, LIU Jiuyi. Research Progress in blending modification of polylactic acid composites and their applications [J]. China Plastics, 2024, 38(9): 129-136. |
[4] | LIU Shunquan, ZHANG Xinyue, FENG Zhanmiao, FU Chenchao, XUE Ping, ZHANG Run. Research progress in modification techniques and performance optimization of PTFE [J]. China Plastics, 2024, 38(7): 112-119. |
[5] | ZHAO Yongfei, ZHANG Wencai, WANG Ke, HAO Xiaogang, SHEN Jun, YANG Xiying, ZHAO Lirong, LI Jianhong, ZHAO Zhixin, QIAO Jie. Research progress in application technology of waste polyethylene⁃modified asphalt [J]. China Plastics, 2024, 38(7): 93-99. |
[6] | ZHANG Zheng, LI Fangquan, LI Jie, LI Changjin, GUO Min, WANG Ying. Research progress in polyamide and its applications for medical and sanitary materials [J]. China Plastics, 2024, 38(5): 113-119. |
[7] | . Research Progress on Modification and Foaming Methods of Environmentally Friendly Biomass Materials [J]. , 2024, (12): 0-0. |
[8] | JIA Mingyin, XU Wenyi, REN Haoyu, XUE Ping. Research progress in similarity amplification theory of screw extruders [J]. China Plastics, 2024, 38(1): 106-111. |
[9] | LI Dan, ZHAO Biao, CHEN Ke, WANG Fan, ZHANG Jingyu, ZHANG Fengbo, PAN Kai. Research progress in preparation and applications of hollow polypropylene fiber [J]. China Plastics, 2023, 37(9): 109-114. |
[10] | . Research progress in organic long afterglow materials [J]. , 2023, 37(6): 131-140. |
[11] | MA Juncheng, XU Shuangping, WANG Xintian, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress in biomass⁃based materials for iodine adsorption [J]. China Plastics, 2023, 37(11): 178-191. |
[12] | MA Zhirui, YIN Tian, JIANG Zhikui, YANG Fan, ZHU Mengke, YANG Yang, HAN Yu, WENG Yunxuan, ZHANG Caili. Research progress in preparation and applications of PBS and its blends [J]. China Plastics, 2023, 37(10): 24-33. |
[13] | SUN Jing, XIONG Faqiang, DENG Ruhui, TAO Yaxian, CHEN Xinggang. Research progress in intelligent polymeric materials for medical monitoring [J]. China Plastics, 2023, 37(10): 40-49. |
[14] | . Research progress in preparation and applications of PBS and its blends [J]. , 2023, 37(10): 24-33. |
[15] | . Research progress in intelligent polymeric materials for medical monitoring [J]. , 2023, 37(10): 40-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||