京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (8): 53-61.DOI: 10.19491/j.issn.1001-9278.2024.08.009
• Materials and Properties • Previous Articles Next Articles
ZHU Guangze1(), XIA Zhidong1(
), ZHOU Wei1(
), WANG Xiaolu1, WU Yufeng1,2, GUO Fu1,3
Received:
2023-12-04
Online:
2024-08-26
Published:
2024-08-19
CLC Number:
ZHU Guangze, XIA Zhidong, ZHOU Wei, WANG Xiaolu, WU Yufeng, GUO Fu. Investigation on co⁃pyrolysis of polyester enamel wire and its pyrolysis product[J]. China Plastics, 2024, 38(8): 53-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.08.009
反应机理 | 符号 | G(α) | |
---|---|---|---|
化学反应机理 | 一步反应 | F1 | -ln(1-α) |
一步半反应 | F1.5 | 2[(1-α)-1/2-1] | |
两步反应 | F2 | (1-α)-1-1 | |
三步反应 | F3 | [(1-α)-2-1]/2 | |
扩散机理 | 一维扩散 | D1 | α2 |
二维扩散 | D2 | (1-α)ln(1-α)+α | |
三维扩散 | D3 | [1-(1-α)1/3]2 | |
四维扩散 | D4 | 1-(2/3)α-(1-α)2/3 | |
幂率 | 1/2幂定律反应 | P2 | α1/2 |
1/3幂定律反应 | P3 | α1/3 | |
指数定律反应 | P4 | α1/4 | |
相界面反应机理 | 一维反应 | R1 | α |
二维反应 | R2 | 1-(1-α)1/2 | |
三维反应 | R3 | 1-(1-α)1/3 | |
随机成核与生长反应机理 | 成核生长(n=1.5) | A1.5 | [-ln(1-α)]2/3 |
成核生长(n=2) | A2 | [-ln(1-α)]1/2 | |
成核生长(n=3) | A3 | [-ln(1-α)]1/3 | |
成核生长(n=4) | A4 | [-ln(1-α)]1/4 |
反应机理 | 符号 | G(α) | |
---|---|---|---|
化学反应机理 | 一步反应 | F1 | -ln(1-α) |
一步半反应 | F1.5 | 2[(1-α)-1/2-1] | |
两步反应 | F2 | (1-α)-1-1 | |
三步反应 | F3 | [(1-α)-2-1]/2 | |
扩散机理 | 一维扩散 | D1 | α2 |
二维扩散 | D2 | (1-α)ln(1-α)+α | |
三维扩散 | D3 | [1-(1-α)1/3]2 | |
四维扩散 | D4 | 1-(2/3)α-(1-α)2/3 | |
幂率 | 1/2幂定律反应 | P2 | α1/2 |
1/3幂定律反应 | P3 | α1/3 | |
指数定律反应 | P4 | α1/4 | |
相界面反应机理 | 一维反应 | R1 | α |
二维反应 | R2 | 1-(1-α)1/2 | |
三维反应 | R3 | 1-(1-α)1/3 | |
随机成核与生长反应机理 | 成核生长(n=1.5) | A1.5 | [-ln(1-α)]2/3 |
成核生长(n=2) | A2 | [-ln(1-α)]1/2 | |
成核生长(n=3) | A3 | [-ln(1-α)]1/3 | |
成核生长(n=4) | A4 | [-ln(1-α)]1/4 |
模型 | 聚酯漆膜 | 聚酯漆膜+焦炭 | ||||
---|---|---|---|---|---|---|
A/min-1 | E/kJ·mol-1 | R2 | A/min-1 | E/kJ·mol-1 | R2 | |
F1 | 9.9×1011 | 164.583 9 | 0.997 98 | 5.9×1011 | 160.318 9 | 0.996 97 |
F1.5 | 4.5×1014 | 196.925 4 | 0.998 56 | 2.4×1014 | 191.903 7 | 0.996 94 |
F2 | 4.8×1017 | 234.180 4 | 0.985 93 | 2.4×1017 | 228.285 8 | 0.987 82 |
F3 | 4.8×1024 | 320.671 0 | 0.950 61 | 1.9×1024 | 312.714 5 | 0.952 75 |
D1 | 3.2×1017 | 241.621 5 | 0.959 28 | 1.4×1017 | 235.186 4 | 0.957 60 |
D2 | 2.6×1019 | 268.600 4 | 0.975 54 | 1.1×1019 | 261.591 7 | 0.974 98 |
D3 | 3.7×1021 | 303.111 8 | 0.990 03 | 1.4×1021 | 295.329 9 | 0.990 34 |
D4 | 4.8×1019 | 279.932 4 | 0.981 38 | 1.9×1019 | 272.674 3 | 0.981 14 |
P2 | 802.6 | 51.920 9 | 0.944 38 | 651.6 | 50.3745 3 | 0.941 79 |
P3 | 13.5 | 30.844 9 | 0.929 85 | 11.7 | 29.8472 6 | 0.926 25 |
P4 | 1.5 | 20.302 8 | 0.909 35 | 1.3 | 19.5794 7 | 0.904 20 |
R1 | 7.8×107 | 115.157 2 | 0.955 01 | 5.2×107 | 111.981 3 | 0.953 09 |
R2 | 2.8×109 | 137.413 8 | 0.982 77 | 1.8×109 | 133.755 6 | 0.982 63 |
R3 | 9.5×109 | 145.894 1 | 0.989 13 | 5.9×109 | 142.053 0 | 0.989 44 |
A1 | 2.5×107 | 105.945 3 | 0.996 71 | 1.7×107 | 103.135 2 | 0.997 77 |
A2 | 1.1×105 | 76.630 1 | 0.996 41 | 8.5×104 | 74.5433 2 | 0.997 54 |
A3 | 429.0 | 47.315 0 | 0.995 71 | 357.5 | 45.9597 9 | 0.996 98 |
A4 | 23.4 | 32.657 4 | 0.994 80 | 20.3 | 31.6597 1 | 0.996 24 |
模型 | 聚酯漆膜 | 聚酯漆膜+焦炭 | ||||
---|---|---|---|---|---|---|
A/min-1 | E/kJ·mol-1 | R2 | A/min-1 | E/kJ·mol-1 | R2 | |
F1 | 9.9×1011 | 164.583 9 | 0.997 98 | 5.9×1011 | 160.318 9 | 0.996 97 |
F1.5 | 4.5×1014 | 196.925 4 | 0.998 56 | 2.4×1014 | 191.903 7 | 0.996 94 |
F2 | 4.8×1017 | 234.180 4 | 0.985 93 | 2.4×1017 | 228.285 8 | 0.987 82 |
F3 | 4.8×1024 | 320.671 0 | 0.950 61 | 1.9×1024 | 312.714 5 | 0.952 75 |
D1 | 3.2×1017 | 241.621 5 | 0.959 28 | 1.4×1017 | 235.186 4 | 0.957 60 |
D2 | 2.6×1019 | 268.600 4 | 0.975 54 | 1.1×1019 | 261.591 7 | 0.974 98 |
D3 | 3.7×1021 | 303.111 8 | 0.990 03 | 1.4×1021 | 295.329 9 | 0.990 34 |
D4 | 4.8×1019 | 279.932 4 | 0.981 38 | 1.9×1019 | 272.674 3 | 0.981 14 |
P2 | 802.6 | 51.920 9 | 0.944 38 | 651.6 | 50.3745 3 | 0.941 79 |
P3 | 13.5 | 30.844 9 | 0.929 85 | 11.7 | 29.8472 6 | 0.926 25 |
P4 | 1.5 | 20.302 8 | 0.909 35 | 1.3 | 19.5794 7 | 0.904 20 |
R1 | 7.8×107 | 115.157 2 | 0.955 01 | 5.2×107 | 111.981 3 | 0.953 09 |
R2 | 2.8×109 | 137.413 8 | 0.982 77 | 1.8×109 | 133.755 6 | 0.982 63 |
R3 | 9.5×109 | 145.894 1 | 0.989 13 | 5.9×109 | 142.053 0 | 0.989 44 |
A1 | 2.5×107 | 105.945 3 | 0.996 71 | 1.7×107 | 103.135 2 | 0.997 77 |
A2 | 1.1×105 | 76.630 1 | 0.996 41 | 8.5×104 | 74.5433 2 | 0.997 54 |
A3 | 429.0 | 47.315 0 | 0.995 71 | 357.5 | 45.9597 9 | 0.996 98 |
A4 | 23.4 | 32.657 4 | 0.994 80 | 20.3 | 31.6597 1 | 0.996 24 |
1 | 文博杰,代涛,韩中奎,等.中国铜资源在用存量与二次供应潜力[J].地球学报,2023,44(02):325⁃332. |
WEN B J, DAI T, HAN Z K, et al. Copper in⁃use stock and recycling potential in China[J]. Acta Geoscientica Sinica,2023,44(02):325⁃332. | |
2 | 中华人民共和国自然资源部.中国矿产资源报告2022[M].北京:地质出版社,2022. |
3 | 国家统计局.中国统计年鉴2022[M].北京:中国统计出版社,2022. |
4 | 中国有色金属工业协会铜业分会[EB/OL].. |
5 | 张楠. 新能源产业发展背景下我国铜资源供需现状与趋势[J]. 中国矿业, 2023, 32 (06): 2⁃9. |
ZHANG N. Analysis of supply and demand status and trend of copper resources in China under development background of new energy industry[J]. China Mining Magazine, 2023, 32(6): 2⁃9. | |
6 | Zhou Wei, Zhu Guangze, Cheng Hao,et al. Investigation of EPET,EPEI,and EPU pyrolysis coke acteristics: Thermal decomposition behaviours,pyrolysis products and mechanism[J].Journal of Analytical and Applied Pyrolysis,2023,175:106203. |
7 | 陈甲斌.中国铜资源保供需要关注的三个问题[J]. 中国国土资源经济,2022,35(10):4⁃10,74. |
CHEN J B.Three problems need to be concerned regarding China′s copper resource supply guarantee[J]. Natural Resource Economics of China, 2022,35(10):4⁃10,74. | |
8 | 韩见, 夏鹏, 邢佳韵,等. 后疫情时代中国铜资源供应形势分析[J]. 地球学报, 2021, 42(02):223⁃228. |
HAN J, XIA P, XING J Y, et al. An analysis of China's copper resources supply situation in the post⁃COVID-19 era[J]. Acta Geoscientica Sinica, 2021, 42(02): 223⁃228. | |
9 | 文进军,陈景达,龚明睿. 漆包线行业VOCs深度治理问题思考与对策[J]. 节能与环保,2023,(06): 49⁃51. |
WHEN J J, CHEN J D, GONG M R. Problems and countermeasures on deep treatment of VOCs in enameled wire Industry[J]. Energy Conservation and Environmental Protection, 2023,(06): 49⁃51. | |
10 | 胡辰玮,李彬,吴玉锋,等.废有机⁃无机复合材料热解回收技术现状与展望[J].材料导报,2021,35(21):21 091⁃21 098,21 112. |
HU C W, LI B, WU Y F, et al. Status and progress of recycling waste organic⁃inorganic composites by pyrolysis[J]. Materials Reports, 2021,35(21):21 091⁃21 098,21 112. | |
11 | Sanmartín Patricia, Cappitelli Francesca, Mitchell Ralph. Current methods of graffiti removal: A review [J].Construction and Building Materials, 2014, 71:363⁃374. |
12 | Li Bingyi, Wang Xiaolu, Xia Zhidong,et al. Co⁃pyrolysis of waste polyester enameled wires and polyvinyl chloride:Evolved products and pyrolysis mechanism analysis[J]. Journal of Analytical and Applied Pyrolysis,2023,169:105816. |
13 | 范春龙,钱立新,丁龙,等.废铜漆包线热解烟气中二噁英的排放特性与减排机理[J].中国环境科学,2023,43(11):5 855⁃5 862. |
FAN C L, QIAN L X, DING L, et al. Emission characteristics and abatement mechanism of dioxins in the pyrolysis flue gas of scrap copper enameled wire[J]. China Environmental Science, 2023,43(11):5 855⁃5 862. | |
14 | 李欢欢. 典型热解焦炭对热解气中焦油模化物的催化裂解研究[D].杭州:浙江大学,2018. |
15 | 陆鹏.废弃物衍生炭基催化剂催化脱除气化焦油的研究[D]. 杭州:浙江大学,2020. |
16 | Zhang Lei, Shu Hao, Yang Jia. Gas⁃modified pyrolysis coke for in situ catalytic cracking of coal tar[J]. ACS omega, 2020, 5:14 911⁃14 923. |
17 | Li Jie, Liu Zhengyi, Tian Yuanyu, et al. Catalytic conversion of gaseous tars using land, coastal and marine biomass⁃derived char catalysts in a bench⁃scale downstream combined fixed bed system[J]. Bioresource Technology, 2020, 304:122735. |
18 | 徐靖,王雪,张代林,等. 煤与废轮胎共热解行为及热解焦炭微晶结构研究[J]. 煤炭转化,2022,45 (05): 53⁃62. |
XU J, WANG X, ZHANG D L, et al. Study on co⁃pyrolysis behavior of coal and waste tires and microcrystalline structure of pyrolytic char[J]. Coal Conversion,2022,45(5):53⁃62. | |
19 | 张浩. 有机固体废弃物热解行为研究[D]. 北京:北京化工大学,2023. |
20 | 马大朝,高伟康,孙翔,等.稻壳与聚氯乙烯共热解的特性及动力学[J].环境工程,2020,38(01):135⁃140. |
MA D C, GAO W K, SUN X, et al. Characteristics and kinetics of co⁃pyrolysis of rice husk and PVC[J]. Environmental Engineering, 2020, 38(1): 135⁃140. | |
21 | Gao N, Li A, Quan C, et al. TG⁃FTIR and Py⁃GC/MS analysis on pyrolysis and combustion of pine sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2013,100: 26–32. |
22 | Ding Z, Liu J, Chen H, et al. Co⁃pyrolysis performances, synergistic mechanisms, and products of textile dyeing sludge and medical plastic wastes[J].Science of the Total Environment, 2021:799. |
23 | 朱光泽, 周炜, 夏志东, 等. 有机废弃物热解分析技术现状与展望[J]. 中国塑料, 2023, 37(11): 101⁃116. |
ZHU G Z, ZHOU W, XIA Z D, et al. Current situation and prospect of pyrolysis analysis technology of organic wastes[J]. China Plastics, 2023, 37(11): 101⁃116. | |
24 | 孙林. 废纸盒催化热解制备富氢燃气及多孔石墨碳的实验研究[D].武汉:华中科技大学,2023. |
25 | 李宗儒. 玉米芯综合利用制备芳烃化学品及碳基吸波材料[D].淮安:安徽理工大学,2023. |
26 | Wang S, Jiang D, Cao B, et al. Study on the interaction effect of seaweed bio⁃coke and rice husk volatiles during co⁃pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2018,132:111–122. |
27 | Xu Shannan, Benjamin Bernard Uzoejinwa, Shuang Wang, et al. Study on co⁃pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke[J]. Renewable Energy, 2019, 132:527–542. |
28 | Liu Wei, Wang Na, Han Junwei, et al. Thermal degradation behaviors and evolved products analysis of polyester paint and waste enameled wires during pyrolysis[J]. Waste Management, 2020, 107:82⁃90. |
29 | 杨琦玲,王儒威.烟煤热解过程分子官能团的演化特征及动力学模型[J].环境工程,2023,41(07):138⁃144. |
YANG Q L, WANG R W. Evolution characteristic and kinetic model for functional groups in bituminous coal during pyrolysis [J]. Environmental Engineering, 2023, 41(7): 138⁃144. | |
30 | 曹子昂,王雷,李皓,等. TG⁃FTIR技术对纤维素和聚氯乙烯共热解的反应特性和产物的分析[J].塑料科技,2023,51(01):18⁃24. |
CAO Z A, WANG L, LI H, et al. TG⁃FTIR analysis of reaction characteristics and products of co⁃pyrolysis of cellulose and PVC[J]. Plastics Science and Technology, 2023,51(01):18⁃24. |
[1] | ZHU Guangze, ZHOU Wei, XIA Zhidong, WANG Xiaolu, LI Bingyi, GUO Fu, WU Yufeng. Current situation and prospect of pyrolysis analysis technology of organic wastes [J]. China Plastics, 2023, 37(11): 101-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||