京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (1): 48-56.DOI: 10.19491/j.issn.1001-9278.2025.01.009
• Processing and Application • Previous Articles Next Articles
GAO Dongming1(), WEI Dandan1, WAN Qihao2
Received:
2024-04-12
Online:
2025-01-26
Published:
2025-02-14
CLC Number:
GAO Dongming, WEI Dandan, WAN Qihao. Study on mechanical properties of silage polyethylene film under dynamic loading conditions[J]. China Plastics, 2025, 39(1): 48-56.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2025.01.009
拉伸方向 | 拉伸速率v/mm·min-1 | 第一屈服强度σy1 /MPa | 第二屈服强度σy2 /MPa | 第一屈服伸长率εy1 /% | 第二屈服伸长率εy2 /% |
---|---|---|---|---|---|
MD | 5 | 6.064 | 9.507 | 7.876 | 48.833 |
100 | 7.473 | 10.838 | 8.218 | 48.729 | |
200 | 8.013 | 11.312 | 7.854 | 47.587 | |
300 | 8.127 | 11.360 | 7.849 | 46.473 | |
400 | 8.481 | 11.618 | 8.102 | 46.979 | |
TD | 5 | 6.292 | 6.808 | 11.693 | 52.518 |
100 | 8.556 | 8.379 | 11.984 | 48.892 | |
200 | 8.499 | 8.193 | 11.367 | 43.397 | |
300 | 8.487 | 8.001 | 11.285 | 43.482 | |
400 | 8.643 | 8.085 | 11.193 | 42.617 |
拉伸方向 | 拉伸速率v/mm·min-1 | 第一屈服强度σy1 /MPa | 第二屈服强度σy2 /MPa | 第一屈服伸长率εy1 /% | 第二屈服伸长率εy2 /% |
---|---|---|---|---|---|
MD | 5 | 6.064 | 9.507 | 7.876 | 48.833 |
100 | 7.473 | 10.838 | 8.218 | 48.729 | |
200 | 8.013 | 11.312 | 7.854 | 47.587 | |
300 | 8.127 | 11.360 | 7.849 | 46.473 | |
400 | 8.481 | 11.618 | 8.102 | 46.979 | |
TD | 5 | 6.292 | 6.808 | 11.693 | 52.518 |
100 | 8.556 | 8.379 | 11.984 | 48.892 | |
200 | 8.499 | 8.193 | 11.367 | 43.397 | |
300 | 8.487 | 8.001 | 11.285 | 43.482 | |
400 | 8.643 | 8.085 | 11.193 | 42.617 |
方向 | 初始延伸率ε0 /% | 初始应力σ0 / MPa | 稳定应力σs / MPa | 应力衰减率γ/% |
---|---|---|---|---|
MD | 10 | 7.15 | 3.66 | 48.80 |
30 | 8.30 | 4.57 | 44.94 | |
50 | 7.72 | 5.16 | 33.16 | |
70 | 6.94 | 5.25 | 24.35 | |
TD | 10 | 7.67 | 3.99 | 47.98 |
30 | 7.15 | 4.59 | 35.80 | |
50 | 4.43 | 3.76 | 15.12 | |
70 | 3.78 | 3.52 | 6.39 |
方向 | 初始延伸率ε0 /% | 初始应力σ0 / MPa | 稳定应力σs / MPa | 应力衰减率γ/% |
---|---|---|---|---|
MD | 10 | 7.15 | 3.66 | 48.80 |
30 | 8.30 | 4.57 | 44.94 | |
50 | 7.72 | 5.16 | 33.16 | |
70 | 6.94 | 5.25 | 24.35 | |
TD | 10 | 7.67 | 3.99 | 47.98 |
30 | 7.15 | 4.59 | 35.80 | |
50 | 4.43 | 3.76 | 15.12 | |
70 | 3.78 | 3.52 | 6.39 |
方向 | 延伸率ε0 /% | 斜率k | 截距b | 决定系数R2 |
---|---|---|---|---|
MD | 10 | -0.049 6 | 4.058 2 | 0.990 1 |
30 | -0.048 4 | 3.170 8 | 0.996 9 | |
50 | -0.034 8 | 2.656 3 | 0.997 1 | |
70 | -0.024 9 | 2.254 4 | 0.997 1 | |
TD | 10 | -0.031 8 | 3.971 0 | 0.852 9 |
30 | -0.031 8 | 3.019 9 | 0.980 5 | |
50 | -0.019 9 | 2.211 4 | 0.967 5 | |
70 | -0.012 8 | 1.744 0 | 0.897 9 |
方向 | 延伸率ε0 /% | 斜率k | 截距b | 决定系数R2 |
---|---|---|---|---|
MD | 10 | -0.049 6 | 4.058 2 | 0.990 1 |
30 | -0.048 4 | 3.170 8 | 0.996 9 | |
50 | -0.034 8 | 2.656 3 | 0.997 1 | |
70 | -0.024 9 | 2.254 4 | 0.997 1 | |
TD | 10 | -0.031 8 | 3.971 0 | 0.852 9 |
30 | -0.031 8 | 3.019 9 | 0.980 5 | |
50 | -0.019 9 | 2.211 4 | 0.967 5 | |
70 | -0.012 8 | 1.744 0 | 0.897 9 |
方向 | ε0/% | Ee/MPa | E1/MPa | E2/MPa | E3/MPa | τ1/s | τ2/s | τ3/s | R2 |
---|---|---|---|---|---|---|---|---|---|
MD | 10 | 36.33 | 7.46 | 16.52 | 5.62 | 227.57 | 10.89 | 3 940.1 | 0.994 |
30 | 15.13 | 5.59 | 2.81 | 2.34 | 10.36 | 232.2 | 3 857.1 | 0.997 | |
50 | 10.25 | 2.06 | 1.03 | 1.14 | 19.49 | 4 397.3 | 379.82 | 0.998 | |
70 | 7.53 | 0.54 | 0.88 | 0.48 | 4 296.9 | 25.98 | 472.2 | 0.996 | |
TD | 10 | 39.69 | 8.3 | 19.25 | 2.34 | 270.6 | 13.03 | 4 342.5 | 0.988 |
30 | 15.24 | 1.28 | 3.74 | 1.9 | 4 119.6 | 16.31 | 324.21 | 0.996 | |
50 | 7.34 | 0.62 | 0.3 | 0.32 | 10 000 | 42.38 | 587.5 | 0.989 | |
70 | 5.04 | 0.21 | 0.08 | 0 | 5 296.8 | 1 335.7 | 1 487.0 | 0.967 |
方向 | ε0/% | Ee/MPa | E1/MPa | E2/MPa | E3/MPa | τ1/s | τ2/s | τ3/s | R2 |
---|---|---|---|---|---|---|---|---|---|
MD | 10 | 36.33 | 7.46 | 16.52 | 5.62 | 227.57 | 10.89 | 3 940.1 | 0.994 |
30 | 15.13 | 5.59 | 2.81 | 2.34 | 10.36 | 232.2 | 3 857.1 | 0.997 | |
50 | 10.25 | 2.06 | 1.03 | 1.14 | 19.49 | 4 397.3 | 379.82 | 0.998 | |
70 | 7.53 | 0.54 | 0.88 | 0.48 | 4 296.9 | 25.98 | 472.2 | 0.996 | |
TD | 10 | 39.69 | 8.3 | 19.25 | 2.34 | 270.6 | 13.03 | 4 342.5 | 0.988 |
30 | 15.24 | 1.28 | 3.74 | 1.9 | 4 119.6 | 16.31 | 324.21 | 0.996 | |
50 | 7.34 | 0.62 | 0.3 | 0.32 | 10 000 | 42.38 | 587.5 | 0.989 | |
70 | 5.04 | 0.21 | 0.08 | 0 | 5 296.8 | 1 335.7 | 1 487.0 | 0.967 |
1 | Coblentz W K, Akins M S. Silage review: recent advances and future technologies for baled silages[J]. Journal of dairy science, 2018, 101(5): 4 075⁃4 092. |
2 | Bisaglia C, Tabacco E, Borreani G. The use of plastic film instead of netting when tying round bales for wrapped baled silage[J]. Biosystems engineering, 2011, 108(1): 1⁃8. |
3 | 周天荣,王 伟,张培青,等. 裹包材料和层数对牧草青贮品质的影响研究[J]. 黑龙江畜牧兽医, 2020(24): 108⁃112+119. |
ZHOU T R, WANG W, ZHANG P Q, et al. Effects of wrapping materials and layers on silage quality of natural pasture [J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(24):108⁃112+119. | |
4 | 刚永和,张海博,杜 江,等. 拉伸膜裹包青贮燕麦饲草冬季饲喂幼龄绵羊的效果[J]. 草业科学, 2019, 36(7): 1 890⁃1 896. |
GANG Y H, ZHANG H B, DU J, et al. Analysis of stretched film⁃wrapped silage oat forage for feeding young sheep in winter [J]. PRATACULTURAL SCIENCE, 2019, 36(7): 1 890⁃1 896. | |
5 | 梁 欢,左福元,袁 扬,等. 拉伸膜裹包青贮技术研究进展[J]. 草地学报, 2014, 22(1): 16⁃21. |
LIANG H, ZUO F Y, YUAN Y, et al. Research progress of round bale silage technology [J]. Acta Agrestia Sinica, 2014, 22(1): 16⁃21. | |
6 | Stanisavljević R, Vuković A, Barać S, et al. Influence of harvesting on quality of Alfalfa Forage used for Haylage and Hay[J]. Journal of Agricultural Sciences, 2019, 25(3): 384⁃390. |
7 | 王德成,贺长彬,武红剑,等. 苜蓿生产全程机械化技术研究现状与发展分析[J]. 农业机械学报, 2017, 48(8): 1⁃25. |
WANG D C, HE C B, WU H J, et al. Review of alfalfa full⁃mechanized production technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 1⁃25. | |
8 | Lemos S V, Denadai M S, Guerra S P S, et al. Economic efficiency of two baling systems for sugarcane straw[J]. Industrial crops and products, 2014, 55: 97⁃101. |
9 | 安徽精良美瑞塑膜科技股份有限公司. 一种牧草青贮专用膜: CN201410277256.7[P]. 2014⁃10⁃15. |
10 | 陈务军,刘昶江,赵 兵. 不同拉伸速率下的ECTFE薄膜单轴拉伸试验[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(S2): 16⁃22. |
CHEN W J, LIU C J, ZHAO B. Experiment and analysis of uniaxial tensile mechanical properties of ECTEE foils under different strain rates [J]. Journal of Tianjin University(Science and Technology), 2019, 52(S2): 16⁃22. | |
11 | Meinel G, Peterlin A. Plastic deformation of polyethylene II. change of mechanical properties during drawing[J]. Journal of Polymer Science Part A‐2: Polymer Physics, 1971, 9(1): 67⁃83. |
12 | 程国阳,杨黎明,黄亚峰,等. 基于DIC方法的车用PP+EPDM⁃TD10材料动态力学性能研究[J]. 塑料工业, 2017, 45(5): 116⁃119. |
CHENG G Y, YANG L M, HUANG Y F, et al. Study on the dynamic mechanical properties of PP+EPDM⁃TD10 for automobile based on DIC [J]. China Plastics Industry, 2017, 45(5): 116⁃119. | |
13 | AlMaadeed M A, Nógellová Z, Mičušík M, et al. Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder[J]. Materials & Design, 2014, 53: 29⁃37. |
14 | 潘吉林,杨 伟,李忠明,等. 聚合物的二次屈服现象[J]. 中国塑料, 2005, (9): 20⁃27. |
PAN J L, YANG W, LI Z M, et al. Double yielding in polymer materials [J]. CHINA PLASTICS, 2005, 19(9): 20⁃27. | |
15 | Hao P, Laheri V, Dai Z, et al. A rate⁃dependent constitutive model predicting the double yield phenomenon, self⁃heating and thermal softening in semi⁃crystalline polymers[J]. International Journal of Plasticity, 2022, 153: 103233. |
16 | Séguéla R. Plasticity of semi⁃crystalline polymers: crystal slip versus melting recrystallization[J]. e⁃Polymers, 2007, 7(1): 32. |
17 | Saffar A, Ajji A, Carreau P J, et al. The impact of new crystalline lamellae formation during annealing on the properties of polypropylene based films and membranes[J]. Polymer, 2014, 55(14): 3 156⁃3 167. |
18 | Amjadi M, Fatemi A. Tensile behavior of high⁃density polyethylene including the effects of processing technique, thickness, temperature, and strain rate[J]. Polymers, 2020, 12(9): 1 857. |
19 | Chaturvedi S, Verma A. Stress relaxation behavior of polymer⁃based composites[M]// Dynamic Mechanical and Creep⁃Recovery Behavior of Polymer⁃Based Composites. Elsevier, 2024: 143⁃165. |
20 | Al‐Hussein M, Strobl G. The stress relaxation behavior of isotactic poly (1‐butene) and its ethylene copolymers[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(11): 2 074⁃2 080. |
21 | Makarov A G, Slutsker G Y, Gofman I V, et al. Initial stage of stress relaxation in oriented polymers[J]. Physics of the Solid State, 2016, 58: 840⁃846. |
22 | Boiko Y M, Kovriga V V. Relaxation behavior of polyethylene oriented by various techniques[J]. International Journal of Polymeric Materials, 1993, 22(1⁃4): 209⁃217. |
23 | 谷晓雨,张宪雷. PVC膜应力松弛特性[J]. 长江科学院院报, 2023, 40(4): 141⁃149. |
GU X Y, ZHANG X L. Stress relaxation characteristics of PVC geomembrane [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(4): 141⁃149. | |
24 | Zhang C, Cai L H, Guo B H, et al. New kinetics equation for stress relaxation of semi⁃crystalline polymers below glass transition temperature[J]. Chinese Journal of Polymer Science, 2022, 40(12): 1 662⁃1 669. |
[1] | . Study on Pressure Variation of PE-HD Pipes for Nuclear Power Plants in Hydrostatic Test [J]. China Plastics, 2018, 32(01): 77-83. |
[2] | . Viscoelasticity Mechanics Model of Medium Density Polyethylene Pipes [J]. China Plastics, 2016, 30(04): 93-98 . |
[3] | . Elastic Characteristics of Polymer Melts Through Microchannels [J]. China Plastics, 2014, 28(10): 76-82 . |
[4] | . Investigation of Tensile Property of ABS Resin and Its Toughening Mechanism [J]. China Plastics, 2013, 27(05): 73-76 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||