京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2020, Vol. 34 ›› Issue (12): 59-64.DOI: 10.19491/j.issn.1001-9278.2020.12.010
• Processing and Application • Previous Articles Next Articles
WEI Chenjie , WANG Jifen(),FAN Linyuan,MU Yilong,DU Haoyu
Received:
2020-07-06
Online:
2020-12-26
Published:
2020-12-26
CLC Number:
WEI Chenjie , WANG Jifen , FAN Linyuan, MU Yilong, DU Haoyu. Identification of Automobile Lampshade Based on Spectral Data Fusion Technology and Artificial Neural Network[J]. China Plastics, 2020, 34(12): 59-64.
成份 | 特征值 | 方差贡献率/% | 累积方差贡献率/% |
---|---|---|---|
pc1 | 525.566 | 56.270 | 56.270 |
pc2 | 276.646 | 29.619 | 85.890 |
pc3 | 53.264 | 5.703 | 91.593 |
pc4 | 28.962 | 3.101 | 94.693 |
pc5 | 18.787 | 2.011 | 96.705 |
pc6 | 10.753 | 1.151 | 97.856 |
pc7 | 5.581 | 0.598 | 98.454 |
pc8 | 3.352 | 0.359 | 98.813 |
pc9 | 2.901 | 0.311 | 99.123 |
pc10 | 1.499 | 0.16 | 99.284 |
pc11 | 1.097 | 0.117 | 99.401 |
成份 | 特征值 | 方差贡献率/% | 累积方差贡献率/% |
---|---|---|---|
pc1 | 525.566 | 56.270 | 56.270 |
pc2 | 276.646 | 29.619 | 85.890 |
pc3 | 53.264 | 5.703 | 91.593 |
pc4 | 28.962 | 3.101 | 94.693 |
pc5 | 18.787 | 2.011 | 96.705 |
pc6 | 10.753 | 1.151 | 97.856 |
pc7 | 5.581 | 0.598 | 98.454 |
pc8 | 3.352 | 0.359 | 98.813 |
pc9 | 2.901 | 0.311 | 99.123 |
pc10 | 1.499 | 0.16 | 99.284 |
pc11 | 1.097 | 0.117 | 99.401 |
数据 类型 | 灯罩 材质 | 正确 分类/个 | 误判/ 个 | 分类准 确率/% | 总体 分类准确率/% | |
---|---|---|---|---|---|---|
RBF | 原始 数据 | PC | 28 | 0 | 100.0 | 72.7 |
PS | 1 | 4 | 20.0 | |||
PMMA | 3 | 8 | 27.3 | |||
一阶导 数数据 | PC | 28 | 0 | 100.0 | 68.2 | |
PS | 2 | 3 | 40.0 | |||
PMMA | 0 | 11 | 0.0 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 81.8 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 4 | 7 | 36.4 | |||
PCA+RBF | 原始 数据 | PC | 23 | 5 | 82.1 | 81.8 |
PS | 4 | 1 | 80.0 | |||
PMMA | 9 | 2 | 81.8 | |||
一阶导 数数据 | PC | 26 | 2 | 92.9 | 84.1 | |
PS | 3 | 2 | 60.0 | |||
PMMA | 8 | 3 | 72.7 | |||
融合的 数据 | PC | 28 | 0 | 100.0 | 90.9 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 7 | 4 | 63.6 |
数据 类型 | 灯罩 材质 | 正确 分类/个 | 误判/ 个 | 分类准 确率/% | 总体 分类准确率/% | |
---|---|---|---|---|---|---|
RBF | 原始 数据 | PC | 28 | 0 | 100.0 | 72.7 |
PS | 1 | 4 | 20.0 | |||
PMMA | 3 | 8 | 27.3 | |||
一阶导 数数据 | PC | 28 | 0 | 100.0 | 68.2 | |
PS | 2 | 3 | 40.0 | |||
PMMA | 0 | 11 | 0.0 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 81.8 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 4 | 7 | 36.4 | |||
PCA+RBF | 原始 数据 | PC | 23 | 5 | 82.1 | 81.8 |
PS | 4 | 1 | 80.0 | |||
PMMA | 9 | 2 | 81.8 | |||
一阶导 数数据 | PC | 26 | 2 | 92.9 | 84.1 | |
PS | 3 | 2 | 60.0 | |||
PMMA | 8 | 3 | 72.7 | |||
融合的 数据 | PC | 28 | 0 | 100.0 | 90.9 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 7 | 4 | 63.6 |
数据 类型 | 灯罩 材质 | 正确 分类/个 | 误判/ 个 | 分类准 确率/% | 总体 分类 准确率/% | |
---|---|---|---|---|---|---|
MLP | 原始 数据 | PC | 25 | 3 | 89.3 | 77.3 |
PS | 4 | 1 | 80.0 | |||
PMMA | 5 | 6 | 45.5 | |||
一阶 导数 数据 | PC | 23 | 5 | 82.1 | 75.0 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 5 | 6 | 45.5 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 90.9 | |
PS | 4 | 1 | 80.0 | |||
PMMA | 9 | 2 | 81.8 | |||
PCA+MLP | 原始 数据 | PC | 26 | 2 | 92.9 | 84.1 |
PS | 5 | 0 | 100.0 | |||
PMMA | 6 | 5 | 54.5 | |||
一阶 导数 数据 | PC | 28 | 0 | 100.0 | 86.4 | |
PS | 0 | 5 | 0.0 | |||
PMMA | 10 | 1 | 90.9 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 97.7 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 11 | 0 | 100.0 |
数据 类型 | 灯罩 材质 | 正确 分类/个 | 误判/ 个 | 分类准 确率/% | 总体 分类 准确率/% | |
---|---|---|---|---|---|---|
MLP | 原始 数据 | PC | 25 | 3 | 89.3 | 77.3 |
PS | 4 | 1 | 80.0 | |||
PMMA | 5 | 6 | 45.5 | |||
一阶 导数 数据 | PC | 23 | 5 | 82.1 | 75.0 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 5 | 6 | 45.5 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 90.9 | |
PS | 4 | 1 | 80.0 | |||
PMMA | 9 | 2 | 81.8 | |||
PCA+MLP | 原始 数据 | PC | 26 | 2 | 92.9 | 84.1 |
PS | 5 | 0 | 100.0 | |||
PMMA | 6 | 5 | 54.5 | |||
一阶 导数 数据 | PC | 28 | 0 | 100.0 | 86.4 | |
PS | 0 | 5 | 0.0 | |||
PMMA | 10 | 1 | 90.9 | |||
融合的 数据 | PC | 27 | 1 | 96.4 | 97.7 | |
PS | 5 | 0 | 100.0 | |||
PMMA | 11 | 0 | 100.0 |
品牌 | 正确分类/个 | 误判/个 | 分类准确率/% |
---|---|---|---|
现代 | 4 | 0 | 100.0 |
东风 | 5 | 0 | 100.0 |
丰田 | 5 | 0 | 100.0 |
福田 | 3 | 0 | 100.0 |
本田 | 3 | 0 | 100.0 |
哈飞 | 4 | 0 | 100.0 |
海马 | 2 | 1 | 66.7 |
江铃 | 2 | 0 | 100.0 |
大众 | 3 | 0 | 100.0 |
五菱 | 4 | 0 | 100.0 |
奇瑞 | 4 | 0 | 100.0 |
吉利 | 4 | 0 | 100.0 |
品牌 | 正确分类/个 | 误判/个 | 分类准确率/% |
---|---|---|---|
现代 | 4 | 0 | 100.0 |
东风 | 5 | 0 | 100.0 |
丰田 | 5 | 0 | 100.0 |
福田 | 3 | 0 | 100.0 |
本田 | 3 | 0 | 100.0 |
哈飞 | 4 | 0 | 100.0 |
海马 | 2 | 1 | 66.7 |
江铃 | 2 | 0 | 100.0 |
大众 | 3 | 0 | 100.0 |
五菱 | 4 | 0 | 100.0 |
奇瑞 | 4 | 0 | 100.0 |
吉利 | 4 | 0 | 100.0 |
1 | 镇江市春秋电子科技有限公司.一种具有防撞击保护装置的汽车灯罩:CN201921942825.X[P].2020⁃04⁃28. |
2 | 领为视觉智能科技(宁波)有限公司.一种直射式均匀发光的汽车LOGO灯:CN201921339477.7[P].2020⁃04⁃17. |
3 | 余 静,王继芬,孙兴龙.汽车车灯灯罩的傅里叶变换红外光谱分析研究[J].光散射学报,2012,(4):426⁃430. |
YU J, WANG J F, SUN X L. Analysis of Car Lampshades by FTIR[J]. Chinese Journal of Light Scattering, 2012,(4):426⁃430. | |
4 | 洪慎章.汽车前灯罩注塑工艺及模具设计[J].橡塑技术与装备,2019,45(23):25⁃27. |
HONG S Z. Injection Molding Process and Mold Design of Automobile Front Iampshade[J]. China Rubber/Plastics Technology And Equipment, 2019,45(23):25⁃27. | |
5 | 庞龙凤.基于正交试验汽车灯罩缩痕深度工艺参数优化[J].中小企业管理与科技,2018,(12):181⁃183. |
PANG L F. Optimization of Process Parameters for the Depth of Automobile Lamp Shrink Marks Based on Orthogonal Test[J]. Management & Technology of SME, 2018,(12):181⁃183. | |
6 | 雷继梅,倪君杰,黄 瑶, 等.高光三色汽车尾灯灯罩注塑工艺参数优化[J].现代塑料加工应用,2020,32(1):46⁃49. |
LEI J M, NI J J, HUANG Y, et al. Optimization of Injection Molding Process Parameters for High⁃Light Tri⁃Color Automobile Taillight Shade[J]. Modern Plastics Processing and Applications, 2020,32(1):46⁃49. | |
7 | 齐鹏远,刘伟杰.汽车前大灯灯罩拉深工艺分析及模具设计[J].机械制造,2016,54(7):102⁃104. |
QI P Y, LIU W J. Analysis of Drawing Process and Die Design for Automobile Headlamp Shade[J]. Machinery, 2016,54(7):102⁃104. | |
8 | 何鸿举,王 魏,王洋洋, 等.基于近红外高光谱技术快速检测冷鲜猪肉酸价[J].食品与发酵工业,2020,46(10):264⁃270. |
HE H J, WANG W, WANG Y Y, et al. NIR Hyperspectral Imaging Technology for Rapid Detection of Acid Value in Fresh Chilled Pork[J]. Food and Fermentation Industries,2020,46(10):264⁃270. | |
9 | 张文龙,吕 玲,梁 月, 等.红外光谱法研究TPU/SEBS的相容性[J].中国塑料,2016,30(10):36⁃41. |
ZHANG W L, LV L, LIANG Y, et al. Investigation on Compatibility of TPU and SEBS with Using Infrared Spectroscopy[J]. China Plastics, 2016,30(10):36⁃41. | |
10 | 彭 丹,李林青,刘亚丽, 等.基于近红外光谱两种植物油过氧化值通用模型研究[J].光谱学与光谱分析,2020,40(6):1 828⁃1 832. |
PENG D, LI L Q, LIU Y L, et al. A General Model for the Peroxidation Values of Two Vegetable Oils Based on Near Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020,40(6):1 828⁃1 832. | |
11 | 代军,晏华,郭骏骏.基于红外光谱法的PE⁃HD光氧老化行为及氧化物生成规律[J].中国塑料,2015,29(8):82⁃86. |
DAI J, YAN H, GUO J J. Degradation Behavior and Oxidation Products Analysis for High Density Polyethylene by Photo⁃oxidation Aging Based on Infrared Spectra Analysis[J]. China Plastics, 2015,29(8):82⁃86. | |
12 | 徐蓓蕾.炙甘草逐级提取的红外光谱与导数光谱监测[J].哈尔滨商业大学学报(自然科学版),2018,34(4):398⁃401. |
XU B L. FT⁃IR and SD⁃IR Monitoring for Radix Glycrrhizae Preparata Extracts by Different Solvents Step by Step[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2018,34(4):398⁃401. | |
13 | 何欣龙,王继芬.牛顿插值多项式⁃导数光谱无损检测车用保险杠[J].激光技术,2020,44(3):333⁃337. |
HE X L, WANG J F. The Identification about the Automotive Bumper Based on Newton Interpolation Polynomial⁃infrared Derivative Spectroscopy[J]. Laser Technology, 2020,44(3):333⁃337. | |
14 | 王胜鹏,郑鹏程,龚自明, 等.青砖茶茶汤滋味品质的近红外快速无损评价[J].华中农业大学学报,2020,39(3):113⁃119. |
WANG S P, ZHENG P C, GONG Z M, et al. Rapid Evaluation of Taste Quality for Qingzhuan Tea Soup Based on Near Infrared Spectroscopy[J]. Journal of Huazhong Agricultural University, 2020,39(3):113⁃119. | |
15 | 姜萌微,丁文文,王 蕊, 等.基于偏最小二乘法的新疆杏可溶性固形物含量的无损检测[J].江苏农业科学,2020,48(9):237⁃241. |
JIANG M W, DING W W, WANG R, et al. Nondestructive Testing of Soluble Solids Content of Apricot in Xinjiang Based on Partial Least Square Method[J]. Jiangsu Agricultural Sciences, 2020,48(9):237⁃241. | |
16 | 王继芬,高春芳,徐佰祺, 等.鞋底材料的中红外光谱可视化快速鉴别[J].中国塑料,2019,33(8):101⁃105. |
WANG J F, GAO C F, XU B Q, et al. Rapid Identification of Sole Materials with Mid⁃infrared Visible Spectroscopy[J]. China Plastics, 2019,33(8):101⁃105. | |
17 | 赵 云,王小军, 马骁, 等.化学计量学方法应用于近红外光谱法测定混合炸药中TNT含量[J].理化检验⁃化学分册,2019,55(10):1 202⁃1 207. |
ZHAO Y, WANG X J, MA X, et al. Application of Chemometrics to NIRS Determination of TNT in Composite Explosive[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2019,55(10):1 202⁃1 207. | |
18 | 石晓妮,田 静,贾 铮, 等.基于中红外光谱技术的甘氨酸铁螯合物判别研究[J].食品安全质量检测学报,2020,11(9):2 733⁃2 738. |
SHI X N, TIAN J, JIA Z, et al. Identification of Adulteration of Glycine Chelate Iron Based on Middle Infrared Spectroscopy[J]. Journal of Food Safety & Quality, 2020,11(9):2 733⁃2 738. | |
19 | 尚 静,张 艳,孟庆龙.光谱技术结合化学计量学识别苹果品种[J].北方园艺,2019(16):66⁃71. |
SHANG J, ZHANG Y, MENG Q L. Identification of Apple Varieties Based on Spectroscopy Technology Combined With Chemometrics[J]. Northern Horticulture,2019(16):66⁃71. | |
20 | 黎氏文梅,陶爱恩,赵飞亚, 等.基于红外光谱结合化学计量学的青叶胆及其近缘种亲缘关系研究[J].中草药,2019,50(12):2 983⁃2 989. |
LISHI W M, TAO A E, ZHAO F Y,et al. Study on Genetic Relationship of Swertia Mileensis and its Related Species Based on Infrared Spectroscopy Combined with Chemometrics[J]. Chinese Traditional and Herbal Drugs, 2019,50(12):2 983⁃2 989. | |
21 | 叶劲秋,刘文波,林春花, 等.基于人工神经网络建立橡胶树白粉病预测预报模型[J].西南农业学报,2020,33(4):797⁃804. |
YE J Q, LIU W B, LIN C H, et al. Establishment of Prediction Model of Rubber Powdery Mildew Based on Artificial Neural Network[J]. Southwest China Journal of Agricultural Sciences, 2020,33(4):797⁃804. | |
22 | 李艺君,阎虎勤.二层人工神经网络在股市预测模型中的应用——以上证指数为例[J].社会科学前沿,2020,9(5):675⁃684. |
LI Y J, YAN H Q. Application of Two⁃Layer Artificial Neural Network in Stock Market Prediction Model—In Case of Shanghai Composite Index[J]. Advances in Social Sciences, 2020,9(5):675⁃684. | |
23 | 余晓露,郑东健.基于人工神经网络的边坡新多点监控模型[J].人民黄河,2020,42(6):117⁃119,129. |
YU X L, ZHENG D J. A New Multi⁃Point Monitoring Model of Slope Based on Artificial Neural Network[J]. Yellow River, 2020,42(6):117⁃119,129. | |
24 | 陈麒瑞,杜少华,赵腾飞, 等.基于人工神经网络的机器人路径规划研究[J].电脑知识与技术,2020,16(3):227⁃229. |
CHEN Q R, DU S H, ZHAO T F, et al. Research On Robot Path Planning Based on Artificial Neural Network[J]. Computer Knowledge and Technology, 2020,16(3):227⁃229. | |
25 | 黄 娟.采摘机器人智能系统应用研究——基于人工神经网络和篮球运动员训练策略[J].农机化研究,2018,40(7):221⁃225. |
HUANG J. Application Research on Intelligent System of Picking Robot Based on Artificial Neural Network and Training Strategies of Basketball Players[J]. Journal of Agricultural Mechanization Research, 2018,40(7):221⁃225. | |
26 | 何欣龙,陈利波,王继芬,等.基于K近邻算法的塑钢窗拉曼光谱分析[J]. 激光与光电子学进展,2018,55(5):409⁃413. |
HE X L, CHEN L B, WANG J F, et al. The Raman Spectroscopy Research of the Plastic Steel Window Based on K Nearest Neighbors Algorithm [J]. Laser & Optoelectronics Progress, 2018,55(5):409⁃413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||