京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (7): 187-196.DOI: 10.19491/j.issn.1001-9278.2022.07.025
• Review • Previous Articles
ZHANG Qiang1(), ZHANG Jian2, LIN Lin1(
), LIU Jing1, WANG Tianhe1
Received:
2022-04-11
Online:
2022-07-26
Published:
2022-07-20
CLC Number:
ZHANG Qiang, ZHANG Jian, LIN Lin, LIU Jing, WANG Tianhe. Research progress in heat transfer enhancement measures for wall materials of microencapsulated phase change materials[J]. China Plastics, 2022, 36(7): 187-196.
相变储能微胶囊 | 制备方法 | 热导率/W·(m·K)-1 | 提升率/% | 文献 | ||
---|---|---|---|---|---|---|
芯材 | 壁材 | 属性 | ||||
石蜡 | CaCO3 | 无机 | 自组装法 | 0.846 0 | 671.43 | [ |
石蜡 | 二氧化硅 | 无机 | 界面聚合法 | 0.701 1 | 62 | [ |
石蜡 | MF | 有机 | 原位聚合法 | 0.111 6 | - | [ |
石蜡 | UF | 有机 | 原位聚合法 | 0.223 6 | - | [ |
正庚烷 | PS | 有机 | 乳液聚合法 | 0.170 0 | - | [ |
正庚烷 | CaCO3 | 无机 | 自组装法 | 1.231 0 | 368 | [ |
正十八烷 | PMMA | 有机 | 乳液法 | 0.192 0 | - | [ |
正十八烷 | 二氧化硅 | 无机 | 溶胶⁃凝胶法 | 0.621 3 | 313 | [ |
正二十烷 | TiO2 | 无机 | 乳液模板界面缩聚 | 0.724 0 | 350 | [ |
正二十烷 | 二氧化硅 | 无机 | 模板法 | 0.902 0 | 493 | [ |
棕榈酸 | 氧化铝 | 无机 | 溶胶⁃凝胶法 | 0.530 0 | 87.94 | [ |
油酸⁃聚乙二醇 | 二氧化硅/氧化锡 | 无机 | 原位乳液界面水解和缩聚 | 0.705 3 | 282.46 | [ |
相变储能微胶囊 | 制备方法 | 热导率/W·(m·K)-1 | 提升率/% | 文献 | ||
---|---|---|---|---|---|---|
芯材 | 壁材 | 属性 | ||||
石蜡 | CaCO3 | 无机 | 自组装法 | 0.846 0 | 671.43 | [ |
石蜡 | 二氧化硅 | 无机 | 界面聚合法 | 0.701 1 | 62 | [ |
石蜡 | MF | 有机 | 原位聚合法 | 0.111 6 | - | [ |
石蜡 | UF | 有机 | 原位聚合法 | 0.223 6 | - | [ |
正庚烷 | PS | 有机 | 乳液聚合法 | 0.170 0 | - | [ |
正庚烷 | CaCO3 | 无机 | 自组装法 | 1.231 0 | 368 | [ |
正十八烷 | PMMA | 有机 | 乳液法 | 0.192 0 | - | [ |
正十八烷 | 二氧化硅 | 无机 | 溶胶⁃凝胶法 | 0.621 3 | 313 | [ |
正二十烷 | TiO2 | 无机 | 乳液模板界面缩聚 | 0.724 0 | 350 | [ |
正二十烷 | 二氧化硅 | 无机 | 模板法 | 0.902 0 | 493 | [ |
棕榈酸 | 氧化铝 | 无机 | 溶胶⁃凝胶法 | 0.530 0 | 87.94 | [ |
油酸⁃聚乙二醇 | 二氧化硅/氧化锡 | 无机 | 原位乳液界面水解和缩聚 | 0.705 3 | 282.46 | [ |
1 | Fang Y, Zou T, Liang X, et al. Self⁃assembly synthesis and properties of microencapsulated n⁃tetradecane phase change materials with a calcium carbonate shell for cold energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3 074⁃3 080. |
2 | Castell A, Solé C. An overview on design methodologies for liquid⁃solid PCM storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 289⁃307. |
3 | Liu J, Chen Z, Liu Y, et al. Preparation of a PCM microcapsule with a graphene oxide platelet⁃patched shell and its thermal camouflage applications[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19 090⁃19 099. |
4 | Arshad A, Jabbal M, Yan Y, et al. The micro⁃/nano⁃PCMs for thermal energy storage systems: a state of art review[J]. International Journal of Energy Research, 2019, 43(11): 5 572⁃5 620. |
5 | Németh B, Németh Á S, Ujhidy A, et al. Fully bio⁃originated latent heat storing calcium alginate microcapsules with high coconut oil loading[J]. Solar Energy, 2018, 170: 314⁃322. |
6 | Yu Q, Tchuenbou⁃Magaia F, Al⁃Duri B, et al. Thermo⁃mechanical analysis of microcapsules containing phase change materials for cold storage[J]. Applied Energy, 2018, 211: 1 190⁃1 202. |
7 | Jin Z, Wang Y, Liu J, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer, 2008, 49(12): 2 903⁃2 910. |
8 | Su W, Darkwa J, Kokogiannakis G. Development of microencapsulated phase change material for solar thermal energy storage[J]. Applied Thermal Engineering, 2017, 112: 1 205⁃1 212. |
9 | Sarı A, Alkan C, Biçer A. Thermal energy storage characteristics of micro⁃nanoencapsulated heneicosane and octacosane with poly (methylmethacrylate) shell[J]. Journal of Microencapsulation, 2016, 33(3): 221⁃228. |
10 | Döğüşcü D K, Altıntaş A, Sarı A, et al. Polystyrene microcapsules with palmitic⁃capric acid eutectic mixture as building thermal energy storage materials[J]. Energy and Buildings, 2017, 150: 376⁃382. |
11 | Lv P, Liu C, Rao Z. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form⁃stable phase change materials[J]. Applied Energy, 2016, 182: 475⁃487. |
12 | Wang T, Wang S, Wu W. Experimental study on effective thermal conductivity of microcapsules based phase change composites[J]. International Journal of Heat and Mass Transfer, 2017, 109: 930⁃937. |
13 | Lin Y, Jia Y, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and sustainable energy reviews, 2018, 82: 2 730⁃2 742. |
14 | Zhang Q, Liu C, Rao Z. Preparation and Characterization of n‐Nonadecane/CaCO3 Microencapsulated Phase Change Material for Thermal Energy Storage[J]. Chemistry Select, 2019, 4(29): 8 482⁃8 492. |
15 | Sarı A, Saleh T A, Hekimoğlu G, et al. Microencapsulated heptadecane with calcium carbonate as thermal conductivity⁃enhanced phase change material for thermal energy storage[J]. Journal of Molecular Liquids, 2021, 328: 115508. |
16 | Ji W, Cheng X, Chen S, et al. Self⁃assembly fabrication of GO/TiO2@ paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546⁃556. |
17 | HL A, XW A, DW B, et al. Fabrication and applications of dual⁃responsive microencapsulated phase change material with enhanced solar energy⁃storage and solar photocatalytic effectiveness[J]. Solar Energy Materials and Solar Cells, 2019, 193:184⁃197. |
18 | Jiang Z, Yang W, He F, et al. Microencapsulated paraffin phase⁃change material with calcium carbonate shell for thermal energy storage and solar⁃thermal conversion[J]. Langmuir, 2018, 34(47): 14 254⁃14 264. |
19 | Ma E, Wei Z, Lian C, et al. Preparation of Colored Microcapsule Phase Change Materials with Colored SiO2 Shell for Thermal Energy Storage and Their Application in Latex Paint Coating[J]. Materials, 2021, 14(14): 4 012. |
20 | Zhang B, Li S, Fei X, et al. Enhanced mechanical pro⁃perties and thermal conductivity of paraffin microcapsules shelled by hydrophobic⁃silicon carbide modified melamine⁃formaldehyde resin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125219. |
21 | Qiao Z, Mao J. Enhanced thermal properties with graphene oxide in the urea⁃formaldehyde microcapsules containing paraffin PCMs[J]. Journal of Microencapsulation, 2017, 34(1): 1⁃9. |
22 | Sarı A, Alkan C, Döğüşcü D K, et al. Micro/nano⁃encapsulated n⁃heptadecane with polystyrene shell for latent heat thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 126: 42⁃50. |
23 | Sarı A, Saleh T A, Hekimoğlu G, et al. Microencapsulated heptadecane with calcium carbonate as thermal conductivity⁃enhanced phase change material for thermal energy storage[J]. Journal of Molecular Liquids, 2021, 328: 115508. |
24 | Li C, Yu H, Song Y, et al. Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage[J]. Energy, 2019, 167: 1 031⁃1 039. |
25 | Zhang H, Wang X, Wu D. Silica encapsulation of n⁃octadecane via sol⁃gel process: a novel microencapsulated phase⁃change material with enhanced thermal conductivity and performance[J]. Journal of colloid and interface science, 2010, 343(1): 246⁃255. |
26 | Liu H, Wang X, Wu D, et al. Morphology⁃controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation[J]. Energy, 2019, 172: 599⁃617. |
27 | Liu H, Niu J, Wang X, et al. Design and construction of mesoporous silica/n⁃eicosane phase⁃change nanocompo⁃sites for supercooling depression and heat transfer enhancement[J]. Energy, 2019, 188: 116075. |
28 | Latibari S T, Mehrali M, Mehrali M, et al. Fabrication and Performances of Microencapsulated Palmitic Acid with Enhanced Thermal Properties[J]. Energy & Fuels, 2015, 29(2):1 010⁃1 018. |
29 | Kalaiselvam S. Bifunctional nanoencapsulated eutectic phase change material core with SiO2/SnO2 nanosphere shell for thermal and electrical energy storage[J]. Materials & Design, 2018, 154: 291⁃301. |
30 | Yu S, Wang X, Wu D. Self⁃assembly synthesis of microencapsulated n⁃eicosane phase⁃change materials with crystalline⁃phase⁃controllable calcium carbonate shell[J]. Energy & Fuels, 2014, 28(5): 3 519⁃3 529. |
31 | Yu S, Wang X, Wu D. Microencapsulation of n⁃octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation[J]. Applied Energy, 2014, 114: 632⁃643. |
32 | Wang T, Wang S, Luo R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113⁃119. |
33 | Ma X, Liu Y, Liu H, et al. Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(17): 15 241⁃15 248. |
34 | Chai L, Wang X, Wu D. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent⁃heat storage and photocatalytic effectiveness[J]. Applied Energy, 2015, 138: 661⁃674. |
35 | Ma X, Liu Y, Liu H, et al. Fabrication of novel slurry containing graphene oxide⁃modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2018, 188: 73⁃80. |
36 | Prasher R. Graphene spreads the heat[J]. Science, 2010, 328(5975): 185⁃186. |
37 | Seol J H, Jo I, Moore A L, et al. Two⁃dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975): 213⁃216. |
38 | Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single⁃layer graphene.[J]. Nano Letters, 2008, 8(3):902. |
39 | Musyoki M O, Li X, Xueling F, et al. Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion[J]. Journal of Materials Science, 2020, 55(18): 7 731⁃7 742. |
40 | Meng X, Qin S, Fan H, et al. Long alkyl chain⁃grafted carbon nanotube⁃decorated binary⁃core phase⁃change microcapsules for heat energy storage: Synthesis and thermal properties[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110589. |
41 | Huang Y T, Zhang H, Wan X J, et al. Carbon nanotube⁃enhanced double⁃walled phase⁃change microcapsules for thermal energy storage[J]. Journal of Materials Chemistry A, 2017, 5(16): 7 482⁃7 493. |
42 | Chen D Z, Qin S Y, Tsui G C P, et al. Fabrication, morphology and thermal properties of octadecylamine⁃grafted graphene oxide⁃modified phase⁃change microcapsules for thermal energy storage[J]. Composites Part B: Engineering, 2019, 157: 239⁃247. |
43 | Zhang L, Yang W, Jiang Z, et al. Graphene oxide⁃modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage⁃prevention performance[J]. Applied Energy, 2017, 197: 354⁃363. |
44 | Mahanta N K, Abramson A R. Thermal conductivity of graphene and graphene oxide nanoplatelets[C]//13th InterSociety conference on thermal and thermomechanical phenomena in electronic systems. IEEE, 2012: 1⁃6. |
45 | Liu Z, Chen Z, Yu F. Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 174: 453⁃459. |
46 | Zhao Q, Yang W, Li Y, et al. Multifunctional phase change microcapsules based on graphene oxide Pickering emulsion for photothermal energy conversion and superhydrophobicity[J]. International Journal of Energy Research, 2020, 44(6): 4 464⁃4 474. |
47 | Gspann T S, Juckes S M, Niven J F, et al. High thermal conductivities of carbon nanotube films and micro⁃fibres and their dependence on morphology[J]. Carbon, 2017, 114: 160⁃168. |
48 | Karaipekli A, Bicer A, Sarı A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy conversion and management, 2017, 134: 373⁃381. |
49 | Li M, Chen M, Wu Z. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube[J]. Applied Energy, 2014, 127: 166⁃171. |
50 | Cheng J, Zhou Y, Ma D, et al. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings[J]. Construction and Building Materials, 2020, 244: 118388. |
51 | Lin C Y, Zhao Z, Niu J, et al. Synthesis, properties and applications of 3D carbon nanotube⁃graphene junctions[J]. Journal of Physics D: Applied Physics, 2016, 49(44): 443001. |
52 | Kong H X. Hybrids of carbon nanotubes and graphene/graphene oxide[J]. Current Opinion in Solid State and Materials Science, 2013, 17(1): 31⁃37. |
53 | Bao H, Shao C, Luo S, et al. Enhancement of interfacial thermal transport by carbon nanotube⁃graphene junction[J]. Journal of Applied Physics, 2014, 115(5): 053524. |
54 | Zhou Y, Li C, Wu H, et al. Construction of hybrid graphene oxide/graphene nanoplates shell in paraffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124780. |
55 | Liu Z, Chen Z, Yu F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler[J]. Solar Energy Materials and Solar Cells, 2019, 192: 72⁃80. |
56 | Yang Y, Ye X, Luo J, et al. Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride[J]. Solar Energy, 2015, 115: 289⁃296. |
57 | Yang Y, Kuang J, Wang H, et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016, 151: 89⁃95. |
58 | Wang Y, Qin Z, Zhang T, et al. Effect of encapsulation and additives doping on the thermophysical properties of erythritol for thermal energy storage[J]. Journal of Renewable and Sustainable Energy, 2020, 12(2): 024103. |
59 | Chen L, Zhang L Q, Tang R F, et al. Synthesis and thermal properties of phase‐change microcapsules incorporated with nano alumina particles in the shell[J]. Journal of Applied Polymer Science, 2012, 124(1): 689⁃698. |
60 | Qiu Z, Zhou Y, Yao Y, et al. Modification of microencapsulated phase change materials (MPCMs) by synthesizing graphene quantum dots (GQDs) and nano⁃aluminum for energy storage and heat transfer applications[J]. Energy, 2019, 181: 1 331⁃1 338. |
61 | Yu X, Qi H, Huang Z, et al. Preparation and characterization of spherical β⁃cyclodextrin/urea–formaldehyde microcapsules modified by nano⁃titanium oxide[J]. RSC advances, 2017, 7(13): 7 857⁃7 863. |
62 | Sun N, Xiao Z. Improvement of the thermostability of silicone oil/polystyrene microcapsules by embedding TiO2/Si3N4 nanocomposites as outer shell[J]. Journal of Materials Science, 2017, 52(18): 10 800⁃10 813. |
63 | Lucas S S, De Aguiar J L B. Multifunctional wall coating combining photocatalysis, self⁃cleaning and latent heat storage[J]. Materials Research Express, 2018, 5(2): 025702. |
64 | Jiang X, Luo R, Peng F, et al. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano⁃Al2O3 [J]. Applied Energy, 2015, 137(1):731⁃737. |
65 | Wei S, Duan Z, Xia Y, et al. Preparation and thermal performances of microencapsulated phase change materials with a nano⁃Al2O3⁃doped shell[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 233⁃241. |
66 | Zhou J, Zhao J, Cui Y, et al. Synthesis of bifunctional nanoencapsulated phase change materials with nano⁃TiO2 modified polyacrylate shell for thermal energy storage and ultraviolet absorption[J]. Polymer International, 2020, 69(2): 140⁃148. |
67 | Sun N, Xiao Z. Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage[J]. Energy & Fuels, 2017, 31(9): 10 186⁃10 195. |
68 | Wang X, Zhang C, Wang K, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science, 2021, 582: 30⁃40. |
69 | Zhang Z, Fang J, Mu J. ZrC nanoparticle‐modified microencapsulated phase change materials with enhanced thermal conductivity and photo‐thermal conversion performance[J]. International Journal of Energy Research, 2020, 44(9): 7 283⁃7 298. |
70 | Sun N, Xiao Z. Paraffin wax⁃based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage[J]. Journal of Materials Science, 2016, 51(18): 8 550⁃8 561. |
71 | Wei H, Yang W, He F, et al. Core@ double‐shell structured multifunctional phase change microcapsules based on modified graphene oxide Pickering emulsion[J]. International Journal of Energy Research, 2021, 45(2): 3 257⁃3 268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||