京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (8): 118-126.DOI: 10.19491/j.issn.1001-9278.2023.08.017
• Review • Previous Articles
ZHU Jiawei1(), PAN Wei1, HUANG Shizheng1, MOHINI Sain2, YANG Weimin3, JIAN Ranran1,2()
Received:
2023-04-28
Online:
2023-08-26
Published:
2023-08-21
CLC Number:
ZHU Jiawei, PAN Wei, HUANG Shizheng, MOHINI Sain, YANG Weimin, JIAN Ranran. Research progress in high⁃speed and high⁃strength fused deposition molding technology[J]. China Plastics, 2023, 37(8): 118-126.
1 | DILBEROGLU U M, GHAREHPAPAGH B, YAMAN U, et al. The role of additive manufacturing in the era of industry 4.0[J]. Procedia Manufacturing, 2017, 11: 545⁃554. |
2 | 卢秉恒. 增材制造技术—现状与未来 [J].中国机械工程, 2020, 31(1): 19⁃23. |
LU B H. Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19⁃23. | |
3 | RAVOORI D, LOWERY C, PRAJAPATI H, et al. Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion based additive manufacturing [J]. Polymer Testing, 2019, 73: 439⁃446. |
4 | Costa S F, Duarte F M, Covas J A. Estimation of filament temperature and adhesion development in fused deposition techniques [J]. Journal of Materials Processing Technology, 2016, 245: 167⁃179. |
5 | S⁃H AHN, MONTERO M, ODELL D, et al. Anisotropic material properties of fused deposition modeling ABS [J]. Rapid Prototyping Journal, 2002, 8: 248⁃257. |
6 | GEBISA A W, LEMU H G. Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085 [J]. Procedia Manufacturing, 2019, 30: 331⁃338. |
7 | ABBOTT A C, TANDON G P, BRADFORD R L, et al. Process⁃structure⁃property effects on ABS bond strength in fused filament fabrication [J]. Additive manufacturing, 2018, 19: 29⁃38. |
8 | CAI L, BYRD P R, ZHANG H, et al. Effect of printing orientation on strength of 3d printed abs plastics [C]//TMS 2016 145 th Annual Meeting & Exhibition: Supplemental Proceedings. Springer International Publishing, 2016: 199⁃204. |
9 | 翟晓雅, 陈发来. 分形模型的3D打印路径规划 [J].计算机辅助设计与图形学学报, 2018, 30(6): 1 123⁃1 135. |
ZHAI X Y, CHEN F L. 3D printing path planning of fractal models [J]. Journal of Computer⁃Aided Design & Computer Graphics 2018, 30(6): 1 123⁃1 135. | |
10 | 韩兴国, 宋小辉, 殷鸣, 等. 熔融沉积式3D打印路径优化算法研究 [J].农业机械学报, 2018, 49(3): 393⁃401. |
HAN X G, SONG X H, YIN M, et al. Path optimization algorithm of 3D printing based on fused deposition modeling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 393⁃401. | |
11 | HAN P, TOFANGCHI A, DESHPANDE A, et al. An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre⁃deposition heating [J]. Procedia Manufacturing, 2019, 34: 672⁃677. |
12 | ALBERTO A, SANGLAE K, JÖRG D, et al. Hybrid material extrusion 3D printing to strengthen interlayer adhesion through hot rolling [J]. Additive Manufacturing, 2022, 55: 102773. |
13 | RAVOORI D, PRAJAPATI H, TALLURU V, et al. Nozzle⁃integrated pre⁃deposition and post⁃deposition heating of previously deposited layers in polymer extrusion based additive manufacturing [J]. Additive Manufacturing, 2019, 28: 719⁃726. |
14 | DU J, WEI Z, WANG X, et al. An improved fused deposition modeling process for forming large⁃size thin⁃walled parts [J]. Journal of Materials Processing Technology, 2016, 234: 332⁃341. |
15 | LEE J E, PARK S J, SON Y, et al. Mechanical reinforcement of additive⁃manufactured constructs using in situ auxiliary heating process [J]. Additive Manufacturing, 2021, 43: 101995. |
16 | BENGFORT P, STRACKE D, KüNNE B. Establishment of a rotary print head to effect residual stresses and interlayer bonding in an FLM⁃Process [J]. Journal of Manufacturing and Materials Processing, 2021, 5(3): 82. |
17 | MAIDIN S, WONG J, MOHAMED A S, et al. Vacuum fused deposition modelling system to improve tensile strength of 3D printed parts [J]. Journal of Fundamental and Applied Sciences, 2017, 9(6): 839⁃853. |
18 | MAZLAN S N H, ALKAHARI M R, MAIDIN N A, et al. Influence of inert gas assisted 3D printing machine on the surface roughness and strength of printed component [J]. Proceedings of Mechanical Engineering Research Day, 2018, 2018: 154⁃155. |
19 | LI G, ZHAO J, JIANG J, et al. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 2 747⁃2 755. |
20 | SWEENEY C B, BURNETTE M, POSPISIL M J, et al. Dielectric barrier discharge applicator for heating carbon nanotube⁃loaded interfaces and enhancing 3D⁃printed bond strength [J]. Nano Letters, 2020, 20(4): 2 310⁃2 315. |
21 | LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction [J]. International Journal of Impact Engineering, 2022, 169: 104320. |
22 | YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth⁃fish⁃inspired double⁃helicoidal composites [J]. Composites Science and Technology, 2021, 205: 108650. |
23 | SUN Y, TIAN W, ZHANG T, et al. Strength and toughness enhancement in 3D printing via bioinspired tool path [J]. Materials & Design, 2020, 185: 108239. |
24 | YIN S, CHEN H, YANG R, et al. Tough nature⁃inspired helicoidal composites with printing⁃induced voids [J]. Cell Reports Physical Science, 2020, 1(7): 100109. |
25 | LEVENHAGEN N P, DADMUN M D. Reactive processing in extrusion⁃based 3D printing to improve isotropy and mechanical properties [J]. Macromolecules, 2019, 52(17): 6 495⁃6 501. |
26 | YAMAMOTO B E, TRIMBLE A Z, MINEI B, et al. Development of multifunctional nanocomposites with 3⁃D printing additive manufacturing and low graphene loading [J]. Journal of Thermoplastic Composite Materials, 2019, 32(3): 383⁃408. |
27 | APPUHAMILLAGE G A, REAGAN J C, KHORSANDI S, et al. 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels⁃Alder reaction [J]. Polymer Chemistry, 2017, 8: 2 087⁃2 092. |
28 | LEVENHAGEN N P, DADMUN M D. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products [J]. Polymer, 2018, 152: 35⁃41. |
29 | PENG F, ZHAO Z, XIA X, et al. Enhanced impact resistance of three⁃dimensional⁃printed parts with structured filaments [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16 087⁃16 094. |
30 | PENG F, JIANG H, WOODS A, et al. 3D Printing with core–shell filaments containing high or low density polyethylene shells [J]. ACS Applied Polymer Materials, 2019, 1(2): 275⁃285. |
31 | IVANOVA O S, WILLIAMS C B, CAMPBELL T A. Additive manufacturing (AM) and nanotechnology: promises and challenges [J]. Rapid Prototyping Journal, 2013, 19: 353⁃364. |
32 | BIRON M. Thermoplastics and thermoplastic composites [M]. Norwich, NY:William Andrew, 2018: 1 033⁃1 036. |
33 | SATHISHKUMAR T P, SATHEESHKUMAR S, NAVEEN J. Glass fiber⁃reinforced polymer composites–a review [J]. Journal of Reinforced Plastics and Composites, 2014, 33(13): 1 258⁃1 275. |
34 | BIRON M. Thermoplastics and thermoplastic composites: technical information for plastics users [M]. Amsterdam, Netherlands: Elsevier, 2007: 4⁃8. |
35 | TEKINALP H L, KUNC V, VELEZ⁃GARCIA G M, et al. Highly oriented carbon fiber–polymer composites via additive manufacturing [J]. Composites Science and Technology, 2014, 105: 144⁃150. |
36 | KARSLI N G, AYTAC A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites [J]. Composites Part B, 2013, 51: 270⁃275. |
37 | ZHONG W, LI F, ZHANG Z, et al. Short fiber reinforced composites for fused deposition modeling [J]. Materials Science & Engineering A, 2001, 301(2): 125⁃130. |
38 | FU S⁃Y, LAUKE B, MÄDER E, et al. Tensile properties of short⁃glass⁃fiber⁃ and short⁃carbon⁃fiber⁃reinforced polypropylene composites [J]. Composites Part A, 2000, 31(10): 1 117⁃1 125. |
39 | ZHONG W, LI F, ZHANG Z G, et al. Short fiber reinforced composites for fused deposition modeling [J]. Materials Science and Engineering A⁃structural Materials Properties Microstructure and Processing, 2001, 301: 125⁃130. |
40 | NING F, CONG W, HU Z, et al. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements [J]. Journal of Composite Materials, 2017, 51: 3 733⁃3 742. |
41 | KLIFT F V D, KOGA Y, TODOROKI A, et al. 3D Printing of continuous carbon fibre reinforced thermo⁃plastic (CFRTP) tensile test specimens [J]. Open Journal of Composite Materials, 2016, 6: 18⁃27. |
42 | TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites [J]. Composites Part A, 2016, 88: 198⁃205. |
43 | SHI K, YAN Y, MEI H, et al. 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength [J]. Additive manufacturing, 2021, 39: 101882. |
44 | CAMINERO M A, CHACÓN J M, GARCÍA⁃MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling [J]. Composites Part B: Engineering, 2018, 148: 93⁃103. |
45 | PENG Y, WU Y, WANG K, et al. Synergistic reinforcement of polyamide⁃based composites by combination of short and continuous carbon fibers via fused filament fabrication [J]. Composite Structures, 2019, 207: 232⁃239. |
46 | PAPA I, SILVESTRI A T, RICCIARDI M R, et al. Effect of fibre orientation on novel continuous 3D⁃Printed fibre⁃reinforced composites [J]. Polymers, 2021, 13(15): 2524. |
47 | GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics [J]. Materials & Design, 2018, 137: 79⁃89. |
48 | RYOSUKE M, MASAHITO U, MASAKI N, et al. Three⁃dimensional printing of continuous⁃fiber composites by in⁃nozzle impregnation [J]. Scientific reports, 2016, 6(1): 23058. |
49 | LIU S, LI Y, LI N. A novel free⁃hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures [J]. Materials & Design, 2018, 137: 235⁃244. |
50 | GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design [J]. Additive manufacturing, 2017, 16: 1⁃11. |
51 | JONES R, HAUFE P, SELLS E, et al. RepRap – the replicating rapid prototyper [J]. Robotica, 2011, 29: 177⁃ 191. |
52 | LABOSSIERE J E, ESHELMAN M E. Rapid prototyping system with controlled material feedstock: U.S. Patent 7,384,255 [P]. 2008⁃6⁃10. |
53 | GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design [J]. Additive manufacturing, 2017, 16: 1⁃11. |
54 | 闫东升, 曹志清, 孔改荣. FDM工艺送丝驱动机构的摩擦驱动力分析 [J]. 北京化工大学学报(自然科学版), 2003, 30(3): 71. |
YAN D S, CAO Z Q, KONG G R. Analysis of the driving force by friction in a driving structure of FDM[J]. Journal of Beijing University of Chemistry Technology, 2003, 30(3): 71. | |
55 | 汪甜田. FDM送丝机构的研究与设计 [D]. 武汉:华中科技大学, 2007. |
56 | BEZUKLADNIKOV I I, TRUSHNIKOV D N, SHILOVA Y A, et al. Study the possibility of improving induction heating of FDM 3D printer nozzle [J]. International Journal of Mechanical Engineering and Technology, 2018, 9(9): 1 463⁃1 474. |
57 | 汪传生, 王虎子, 蔡宁, 等. 粉体喂料3D打印机喷头装置的温度分析及优化设计 [J].中国塑料, 2018, 32(2): 98⁃102. |
WANG C S, WANG H Z, CAI N, et al. Temperature analysis and optimization design of nozzles of powder feeding 3D printer [J]. China Plastics, 2018, 32(2): 98⁃102. | |
58 | SUKINDAR N A, MOHD ARIFFIN M K A, BAHARUDIN B T H T BIN, et al. Comparison on dimensional accuracy using a newly developed nozzle for Open⁃source 3D printer [J]. Applied Mechanics and Materials, 2016, 859: 15⁃19. |
59 | GO J, HART A J. Fast desktop⁃scale extrusion additive manufacturing [J]. Additive Manufacturing, 2017, 18: 276⁃284. |
60 | ILYéS K. Three⁃dimensional printing by fused deposition modeling (3dp⁃fdm) in pharmaceutics [J]. Farmacia, 2020, 68: 586⁃596. |
61 | HE K, YANG Z, BAI Y, et al. Intelligent fault diagnosis of delta 3D printers using attitude sensors based on support vector machines [J]. Sensors (Basel, Switzerland), 2018, 18(4): 1298. |
62 | YADAV D, CHHABRA D, GARG R K, et al. Optimization of FDM 3D printing process parameters for multi⁃material using artificial neural network [J]. Materials Today: Proceedings, 2020, 21: 1 583⁃1 591. |
63 | DUAN M, YOON D, OKWUDIRE C E. A limited⁃preview filtered B⁃spline approach to tracking control – With application to vibration⁃induced error compensation of a 3D printer [J]. Mechatronics, 2018, 56: 287⁃296. |
64 | 张文君, 方辉, 袁泽林, 等. 桌面型FDM 3D打印设备的优化设计与精度分析 [J]. 机械, 2018, 45(1): 5⁃10. |
ZHANG W J, FANG H, YUAN Z L, et al. Optimization design and precision analysis of desktop FDM 3D printing equipment [J]. Machinery, 2018, 45(1): 5⁃10. | |
65 | Sollmann K S, Jouaneh M K, Lavender D. Dynamic modeling of a two⁃axis, parallel, H⁃frame⁃type XY positioning system [J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(2): 280⁃290. |
66 | CAPOTE G A M, OEHLMANN P, CAMPOS J C, et al. Trends in force and print speed in material extrusion [J]. Additive Manufacturing, 2021, 46: 102141. |
67 | J⁃W TSENG, LIU C⁃Y, YEN Y⁃K, et al. Screw extrusion⁃based additive manufacturing of PEEK [J]. Materials & Design, 2018, 140: 209⁃221. |
68 | 罗攀. 熔融挤压快速成型机机构与挤出的研究 [D]. 成都:西南交通大学, 2015. |
69 | KUMAR N, JAIN P K, TANDON P, et al. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA) [J]. Journal of Manufacturing Processes, 2018, 35: 317⁃326. |
70 | HONG S I, SANCHEZ C M, DU H Y, et al. Fabrication of 3D printed metal structures by use of high⁃viscosity Cu paste and a screw extruder [J]. Journal of Electronic Materials, 2015, 44: 836⁃841. |
71 | 王天明, 习俊通, 金烨. 颗粒体进料微型螺旋挤压堆积喷头的设计 [J]. 机械工程学报, 2006, 42(9): 178⁃184. |
WANG T M, XI J T, JIN Y. Design of mini⁃screw⁃extruding deposition head fed based on bulk material in granulated form [J]. Chinese Journal of Mechanical Engineering, 2006, 42(9): 178⁃184. | |
72 | CAPOTE G A M, OEHLMANN P E V, CAMPOS J C B, et al. Trends in force and print speed in material extrusion [J]. Additive Manufacturing, 2021, 46: 102141. |
73 | 王静. 一种双输出多向3D打印并联机器人的设计与分析 [D]. 北京: 北京交通大学, 2018. |
74 | 严铜. 多喷头 3 D打印机并行打印的方法:中国,CN110815812A [P]. 2020⁃02⁃21. |
75 | 李文涛. 大型FDM⁃3D打印系统设计及关键技术研究 [D]. 武汉:湖北工业大学, 2020. |
76 | PEKKANEN A M, ZAWASKI C, STEVENSON JR A T, et al. Poly(ether ester) ionomers as water⁃soluble polymers for material extrusion additive manufacturing processes [J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12 324⁃12 331. |
77 | 王琛, 刘露杨. 新型可调流量3D打印喷头 [J]. 技术与市场, 2018, 25(10): 103. |
78 | SON J, YUN S, PARK K, et al. Isotropic 3d printing using material extrusion of thin shell and post⁃casting of reinforcement core [J]. SSRN Electronic Journal, 2022, 58: 102974. |
79 | KAZMER D O, COLON A R. Injection printing: Additive molding via shell material extrusion and filling [J]. Additive Manufacturing, 2020, 36: 101469. |
80 | 鉴冉冉, 贾维辉, 郭鹏, 等. 一种注射 3 D 打印装置: 中国,CN113211785A [P]. 2021⁃08⁃06. |
81 | 鉴冉冉, 林广义, 史忠鹤, 等. 一种桌面级 3 D 打印和复印装置及方法: 中国, CN112571791A [P]. 2021⁃03⁃30. |
82 | 鉴冉冉, 林广义, 史忠鹤, 等. 一种具有增强骨架的异步 3 D 打印方法及装置: 中国, CN111823581A [P]. 2020⁃10⁃27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||