京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (9): 112-122.DOI: 10.19491/j.issn.1001-9278.2024.09.019
• Review • Previous Articles
WEN Qilin(), JIA Xuehua, SUN Yanjun, NIU Siji, CHEN Yinghong, CHEN Ning(
)
Received:
2024-01-03
Online:
2024-09-26
Published:
2024-09-27
CLC Number:
WEN Qilin, JIA Xuehua, SUN Yanjun, NIU Siji, CHEN Yinghong, CHEN Ning. Research progress in preparation and applications of biodegradable plastic packaging films[J]. China Plastics, 2024, 38(9): 112-122.
材料* | 熔融温度/°C | 热变形温度/°C | 玻璃化温度/°C | 结晶度/°C | 拉伸强度/MPa | 断裂伸长率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PLA | 175 | 58 | 60 | 50 | 53 | 6 | [ |
PBAT | 110~115 | - | -30 | 4 | 15 | 760 | [ |
PPC | - | - | 30~41 | - | 2~38 | 8~1 820 | [ |
PBS | 114 | 97 | -35 | 40 | 34 | 560 | [ |
PET | 250 | 98 | 80 | 35 | 71.6 | 70 | [ |
PE⁃HD | 129 | 82 | -120 | 69 | 28 | 700 | [ |
PE⁃LD | 110 | 49 | -120 | 49 | 10 | 300 | [ |
PP | 163 | 110 | -5 | 56 | 33 | 415 | [ |
材料* | 熔融温度/°C | 热变形温度/°C | 玻璃化温度/°C | 结晶度/°C | 拉伸强度/MPa | 断裂伸长率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PLA | 175 | 58 | 60 | 50 | 53 | 6 | [ |
PBAT | 110~115 | - | -30 | 4 | 15 | 760 | [ |
PPC | - | - | 30~41 | - | 2~38 | 8~1 820 | [ |
PBS | 114 | 97 | -35 | 40 | 34 | 560 | [ |
PET | 250 | 98 | 80 | 35 | 71.6 | 70 | [ |
PE⁃HD | 129 | 82 | -120 | 69 | 28 | 700 | [ |
PE⁃LD | 110 | 49 | -120 | 49 | 10 | 300 | [ |
PP | 163 | 110 | -5 | 56 | 33 | 415 | [ |
材料* | 氧气透过率/cm3▪(m2·d·Pa)-1 | 水蒸气透过率/g▪(m2·d)-1 | 参考文献 |
---|---|---|---|
PLA | 550 | 325 | [ |
PBAT | 380 | 880 | [ |
PPC | 10~20 | 40~80 | [ |
PBS | 280 | 450~500 | [ |
BOPET | 60~100 | 100 | [ |
PE⁃HD | 1200 | 20 | [ |
BOPP | 2000 | — | [ |
PE⁃LD/PPC/PE⁃LD | 9.5 | 5.3 | [ |
材料* | 氧气透过率/cm3▪(m2·d·Pa)-1 | 水蒸气透过率/g▪(m2·d)-1 | 参考文献 |
---|---|---|---|
PLA | 550 | 325 | [ |
PBAT | 380 | 880 | [ |
PPC | 10~20 | 40~80 | [ |
PBS | 280 | 450~500 | [ |
BOPET | 60~100 | 100 | [ |
PE⁃HD | 1200 | 20 | [ |
BOPP | 2000 | — | [ |
PE⁃LD/PPC/PE⁃LD | 9.5 | 5.3 | [ |
1 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3 (7): e1700782. |
2 | ROSENBOOM J G, LANGER R, TRAVERSO G. Bioplastics for a circular economy [J]. Nature Reviews Materials, 2022, 7 (2): 117⁃137. |
3 | 联合国环境规划署.2023年世界环境日《塑战速决实践指南》[R].2023.06.05. |
4 | 马占峰, 牛国强, 芦 珊. 中国塑料加工业(2022) [J]. 中国塑料, 2023, 37 (5): 110⁃115. |
MA Z F, NIU G Q, LU S. China plastics industry (2022) [J]. China Plastics, 2023, 37 (5): 110⁃115. | |
5 | MACLEO M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution [J]. Science, 2021, 373 (6550): 61⁃65. |
6 | JACOBSEN L F, PEDERSEN S, THOGERSEN J. Drivers of and barriers to consumers’ plastic packaging waste avoidance and recycling⁃A systematic literature review [J]. Waste Management, 2022, 141: 63–78. |
7 | GUO C Y, GUO H G. Progress in the degradability of biodegradable film materials for packaging [J]. Membranes, 2022, 12 (5): 500. |
8 | SHAO L Y, XI Y W, WENG Y X. Recent advances in PLA⁃based antibacterial food packaging and its applications [J]. Molecules, 2022, 27 (18): 5 953. |
9 | SIDDIQUI S A, SUNDARSINGH A, BAHMID N A, et al. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU [J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22 (5): 4 147⁃4 185. |
10 | 翁云宣, 付 烨. 生物分解塑料与生物基塑料 [M]. 化学工业出版社, 2020. |
11 | DOBRUCKA R. Bioplastic packaging materials in circular economy [J]. LogForum, 2019, 15(1): 129⁃137. |
12 | SID S, MOR R S, KISHORE A, et al. Bio⁃sourced polymers as alternatives to conventional food packaging materials: A review [J]. Trends in Food Science & Technology, 2021, 115: 87⁃104. |
13 | 马志蕊, 尹 甜, 蒋志魁, 等. PBS及其复合膜的制备及应用研究进展 [J]. 中国塑料, 2023, 37 (10): 24⁃33. |
MA Z R, YIN T, JIANG Z K, et al. Research progress in preparation and applications of PBS and its blends [J]. China Plastics, 2023, 37 (10): 24⁃33. | |
14 | 张玉霞. 可生物降解聚合物及其纳米复合材料 [M]. 机械工业出版社, 2017. |
15 | 王献红, 王佛松. 二氧化碳的固定和利用 [M]. 化学工业出版社, 2011. |
16 | YANG F, ZHANG C L, MA Z R, et al. In situ formation of microfibrillar PBAT in PGA films: An effective way to robust barrier and mechanical properties for fully biodegradable packaging films [J]. ACS Omega, 2022, 7 (24): 21 280⁃21 290. |
17 | BANDELLI D, ALEX J, WEBER C, et al. Polyester stereocomplexes beyond PLA: Could synthetic opportunities revolutionize established material blending? [J]. Macromolecular Rapid Communications, 2020, 41 (1): 1900560. |
18 | YU J M, XU S C, LIU B, et al. PLA bioplastic production: From monomer to the polymer [J]. European Polymer Journal, 2023, 193: 112076. |
19 | LI X, YAN X Y, YANG J,et al. Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate⁃co⁃terephthalate) blends and films by reactive extrusion with chain extender [J]. Polymer Engineering and Science, 2018, 58 (10): 1 868⁃1 878. |
20 | HALLORAN M W, DANIELCZAK L, NICELL J A, et al. Highly flexible polylactide food packaging plasticized with nontoxic, biosourced glycerol plasticizers [J]. ACS Applied Polymer Materials, 2022, 4 (5): 3 608⁃3 617. |
21 | NOIVOIL N, YOKSAN R. Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch [J]. Journal of Applied Polymer Science, 2021, 138 (2): e49675. |
22 | TRINH B M, CHANG C C, MEKONNEM T H. Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties [J]. Polymer, 2021, 223: 123679. |
23 | MA F H, WANG B, LENG X F, et al. Biodegradable PBAT/PLA/CaCO3 blowing films with enhanced mechanical and barrier properties: Investigation of size and content of CaCO3 particles [J]. Macromolecular Materials and Engineering, 2022, 307 (9): 2200135. |
24 | SUNWANAMORNLERT P, KERDDONFAG N, SANE A, et al. Poly(lactic acid)/poly(butylene⁃succinate⁃co⁃adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread [J]. Food Packaging and Shelf Life, 2020, 25: 100515. |
25 | AKSHAYKRANTH A, JAYARAMBABU N, TAR T V, et al. Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications [J]. Polymer Bulletin, 2022, 80 (2): 1 369⁃1 384. |
26 | FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate⁃co⁃terephthalate)⁃PBAT based composites [J]. Polymer Engineering and Science, 2019, 50: E7⁃E15. |
27 | SOUSA F M, CAVALCANTI F B, MARINHO V A D, et al. Effect of composition on permeability, mechanical properties and biodegradation of PBAT/PCL blends films [J]. Polymer Bulletin, 2022, 79 (7): 5 327⁃5 338. |
28 | QIU S, ZHOU Y K, WATERHOUSE G I N, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films [J]. Food Chemistry, 2021, 334: 127487. |
29 | JIANG G, LI H L, WANG F. Structure of PBAT/PPC blends prepared by in⁃situ reactive compatibilization and properties of their blowing films [J]. Materials Today Communications, 2021, 27: 102215. |
30 | CHAROENSRI K, RODWIHOK C, KO S H, et al. Enhanced antimicrobial and physical properties of poly (butylene adipate⁃co⁃terephthalate)/zinc oxide/reduced graphene oxide ternary nanocomposite films [J]. Materials Today Communications, 2021, 28:102586. |
31 | DIAO X Q, ZHANG C L, WENG Y X. Properties and degradability of poly(butylene adipate⁃co⁃terephthalate)/calcium carbonate films modified by polyethylene glycol [J]. Polymers, 2022, 14 (3): 484. |
32 | YU S X, WANG H M, XIONG S J, et al. Sustainable wood⁃based poly(butylene adipate⁃co⁃terephthalate) biodegradable composite films reinforced by a rapid homogeneous esterification strategy [J]. ACS Sustainable Chemistry & Engineering. 2022, 10 (44): 14 568–14 578. |
33 | HAO Y, CHU Y C, ZHANG M M, et al. Preparation of functional degradable antibacterial film and application in fresh⁃keeping of grass carp [J]. Journal of Agriculture and Food Research, 2022, 9: 100341. |
34 | XIAO L Q, ZHANG X J, FU Q L, et al. One step to simultaneously improve the antibacterial activity and compatibility with PBAT of nanolignin via surface modification [J]. ACS Sustainable Chemistry & Engineering, 2023, 11 (40): 14 773⁃14 781. |
35 | MBABAZI B, WENDT O F, NYANZI S A, et al. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts [J]. Results in Chemistry, 2022,4: 100542. |
36 | NÖRNBERG B, BORCHARDT E, LUINSTRA G A, et al. Wood plastic composites from poly(propylene carbonate) and poplar wood flour ⁃ Mechanical, thermal and morphological properties [J]. European Polymer Journal,2014, 51: 167⁃176. |
37 | JIANG G, YU L, ZHANG M D, et al. Poly(propylene carbonate)/poly(3⁃hydroxybutyrate)⁃based bionanocomposites reinforced with cellulose nanocrystal for potential application as a packaging material [J]. Polymers for Advanced Technologies, 2020, 31 (4): 853⁃863. |
38 | LI G F, LUO W H, XIAO M, et al. Biodegradable poly(propylene carbonate)/layered double hydroxide composite films with enhanced gas barrier and mechanical properties [J]. Chinese Journal of Polymer Science, 2016, 34 (1): 13⁃22. |
39 | WU W, LIU T, DENG X Q, et al. Ecofriendly UV⁃protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin [J]. International Journal of Biological Macromolecules, 2019, 126: 1 030⁃1 036. |
40 | BAHRAMIAN B, CHRZANOWSKI W, KONDYURIN A, et al. Fabrication of antimicrobial poly(propylene carbonate) film by plasma surface modification [J]. Industrial & Engineering Chemistry Research. 2017, 56 (44): 12 578⁃12 587. |
41 | JI G Y, ZHANG X H, WANG W, et al. Engineering tannic acid with tailored structure into poly(propylene carbonate) towards supramechanical performance and multi⁃functions [J]. Polymer, 2023, 282: 126187. |
42 | TRAN T N, LIM K T, FIORENTINI F, et al. Antioxidant and biocompatible CO2⁃based biocomposites from vegetable wastes for active food packaging [J]. Advanced Sustainable Systems, 2022, 6 (6): 2100470. |
43 | BARLETTA M, AVERSA C, AYYOOB M, et al. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications [J]. Progress in Polymer Science, 2022, 132: 101579. |
44 | GAROFALO E, DI MAIO L, SCARFATO P, et al. Selective localization of nanoparticles to enhance the properties of PBS/PLA nanocomposite blown films [J]. Journal of Polymers and the Environment, 2023, 31 (10): 4 546⁃4 558. |
45 | COSTA A R D, CROCITTI A, DE CARVALHO L H, et al. Properties of biodegradable films based on poly(butylene Succinate) (PBS) and poly(butylene adipate⁃co⁃terephthalate) (PBAT) blends [J]. Polymers, 2020, 12 (10): 2 317. |
46 | ONO H, KAWAI Y, ATA S, et al. Synthesis of multiblock copolymer composed of biodegradable poly(butylene succinate) and poly(2⁃pyrrolidone): Impact of each block length on the mechanical properties [J]. Macromolecular Rapid Communications, 2023, 44 (15): 2200135. |
47 | BELUCI N D C L, DOS SANTOS J, DE CARVATHO F A, et al. Reactive biodegradable extruded blends of thermoplastic starch and polyesters [J]. Carbohydrate Polymer Technologies and Applications, 2023, 5: 100274. |
48 | HOU H B, PU Z J, WANG X, et al. Effect of surface modification of SiO2 particles on the interfacial and mechanical properties of PBS composites [J]. Polymer Composites, 2020, 43 (8): 5 087⁃5 094. |
49 | XU J W, MANEPALLI P H, ZHU L J, et al. Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion [J]. Journal of Polymer Research, 2019, 26 (8): 188. |
50 | ŁOPUSIEWICZ Ł, ZDANOWICZ M, MACIEJA S, et al. Development and characterization of bioactive poly(butylene⁃succinate) films modified with quercetin for food packaging applications [J]. Polymers, 2021, 13 (11): 1 798. |
51 | BASBASAN A J, HARARAK B, WINOTAPUN C, et al. Lignin nanoparticles for enhancing physicochemical and antimicrobial properties of polybutylene succinate/thymol composite film for active packaging [J]. Polymers, 2023, 15 (4): 989. |
52 | WATTANAWONG N, AHT⁃ONG D. Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films [J]. Polymer Degradation and Stability, 2021, 183: 109459. |
53 | JIANG G, YU L. High strength and barrier properties of biodegradable PPC/PBSA blends prepared by reaction compatibilization for promising application in packaging [J]. Macromolecular Materials and Engineering, 2021, 306 (7): 2000723. |
54 | KHARRAT F, KHLIF M, HILLIOU L, et al. Minimally processed date palm (Phoenix dactylifera L.) leaves as natural fillers and processing aids in poly(lactic acid) composites designed for the extrusion film blowing of thin packages [J]. Industrial Crops & Products, 2020, 154: 112637. |
55 | PIETROSANTO A, SCARFATO P, DI MAIO L, et al. Effect of cooling air in the film blowing process on the properties of PLA/PBAT films [J]. Macromolecular Symposia, 2022, 405 (1): 2100251. |
56 | PAL A K, WU F, MISRA M, et al. Reactive extrusion of sustainable PHBV/PBAT⁃based nanocomposite films with organically modified nanoclay for packaging applications: Compression moulding vs. cast film extrusion [J]. Composites Part B⁃Engineering, 2020, 198: 108141. |
57 | WANG K J, JIAO T G, WANG Y M, et al. The microstructures of extrusion cast biodegradable poly(butylene succinate) films investigated by X⁃ray diffraction [J]. Materials Letters, 2013, 92: 334⁃337. |
58 | MESSIN T, FOLLAIN N, GUINAULT A, et al. Structure and barrier properties of multinanolayered biodegradable PLA/PBSA films: Confinement effect via forced assembly coextrusion [J]. ACS Applied of Materials & Interfaces, 2017, 9 (34): 29 101⁃29 112. |
59 | KAREVAN M. Hybrid micro‑composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method [J]. Journal of Polymer Research, 2022, 29 (9): 395. |
60 | SINGH S, PATEL M K, GENG S Y, et al. Orientation of polylactic acid⁃chitin nanocomposite films via combined calendering and uniaxial drawing: Effect on structure, mechanical, and thermal properties [J]. Nanomaterials, 2021, 11 (12): 3 308. |
61 | CHARLON S, MARAIS S, DARGENT R, et al. Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)⁃co⁃(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction [J]. Physical Chemistry Chemical Physics, 2015, 17 (44): 29918. |
62 | KATANYOOTA P, JARIYASAKOOLROJ P, SANE A. Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate⁃co⁃terephthalate) films [J]. Polymer Bulletin, 2023, 80 (5): 5 219⁃5 237. |
63 | NIU D Y, XU P W, LIU B, et al. Toward high strength, ductility, and barrier performance for poly(glycolic acid)/poly(butylene adipate⁃co⁃terephthalate) green films through reactive compatibilization and biaxial drawing [J]. Macromolecules, 2023, 56 (20): 8 236⁃8 246. |
64 | WANG X G, LI X, CUI L N, et al. Improvement of gas barrier properties for biodegradable poly(butylene adipate⁃co⁃terephthalate) nanocomposites with MXene nanosheets via biaxial stretching[J]. Polymers, 2022, 14 (3): 480. |
65 | PAL A K, MISRA M, MOHANTY A K. Silane treated starch dispersed PBAT/PHBV⁃based composites: Improved barrier performance for single⁃use plastic alternatives [J]. International Journal of Biological Macromolecules, 2023, 229: 1 009⁃1 022. |
66 | PARLAK M E, UZUNER K, KIRAC F T, et al. Production and characterization of biodegradable bi⁃layer films from poly (lactic) acid and zein [J]. International Journal of Biological Macromolecules, 2023, 227: 1 027⁃1 037. |
67 | JIANG G, ZHANG M D, FENG J, et al. High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrytals [J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11 246⁃11 254. |
68 | MANGARAJ S, THAKUR R R, YADAV A. Development and characterization of PLA and Cassava starch⁃based novel biodegradable film used for food packaging application [J]. Journal of Food Processing and Preservation, 2022, 46 (9): e16314. |
69 | ZHENG Y L, JIA X Y, ZHAO Z Y, et al. Innovative natural antimicrobial natamycin incorporated titanium dioxide (nano⁃TiO2)/poly (butylene adipate⁃co⁃terephthalate) (PBAT)/poly (lactic acid) (PLA) biodegradable active film (NTP@PLA) and application in grape preservation [J]. Food Chemistry, 2023, 400: 134100. |
70 | PARK J J, CHOI Y H, SIM E J, et al. Biodegradable poly(3⁃hydroxybutyrate⁃co⁃4⁃hydroxybutyrate) films coated with tannic acid as an active food packaging material [J]. Food Packaging and Shelf Life, 2023, 35: 101009. |
71 | YUSOF N L, MUTALIB N A A, NAZATUL U K, et al. Efficacy of biopolymer/starch based antimicrobial packaging for chicken breast fillets [J]. Foods, 2021, 10 (10): 2 379. |
72 | LAORENZA Y, HARNKARNSUJARIT N. Ginger oil and lime peel oil loaded PBAT/PLA via cast⁃extrusion as shrimp active packaging: Microbial and melanosis inhibition [J]. Food Packaging and Shelf Life, 2023, 38: 101116. |
73 | DEVI M P I, NALLAMUTHU N, RAJINI N, et al. Biodegradable poly(propylene) carbonate using in⁃situ generated CuNPs coated Tamarindus indica filler for biomedical applications [J]. Materials Today Communications, 2019,19: 106⁃113. |
74 | CAPPIELLO G, AVERSA C, BARLETTA M, et al. Progress in design and processing of polyhydroxyalkanoates (PHAs): Home compostable poly(3⁃hydroxybutyrate⁃co-3⁃hydroxyhexanoate) (PHBHHx)/polybutylene succinate⁃co⁃adipate (PBSA) blend [J]. Journal of Applied Polymer Science, 2023, 140 (23): e53933. |
75 | LIN H, CHEN Y, GAO X R, et al. Transparent, heat⁃resistant, ductile, and self⁃reinforced polylactide through simultaneous formation of nanocrystals and an oriented amorphous phase [J]. Macromolecules, 2023, 56 (6): 2 454⁃2 464. |
76 | ZHANG X, LIU W F, YANG D J, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV⁃blocking performance [J]. Advanced Functional Materials, 2019, 29 (4): 1806912. |
77 | ZHENG H, TANG H B, YANG C X, et al. Evaluation of the slow⁃release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets [J]. Food Chemistry, 2022, 385: 132693. |
78 | BOTTA L, TITONE V, TERESI R, et al. Biocomposite PBAT/lignin blown films with enhanced photo⁃stability [J]. International Journal of Biological Macromolecules, 2022, 217: 161⁃170. |
79 | VIEIRA L D S, MONTAGNA L S, MARINI J, et al. Influence of particle size and glassy carbon content on the thermal, mechanical, and electrical properties of PHBV/glassy carbon composites [J]. Journal of Applied Polymer Science, 2021, 138 (4): e49740. |
[1] | ZHANG Xinpeng, XU Jun, DU Xiyan, GUO Baohua. Study on modification and properties of starch esterified composite nano montmorillonite [J]. China Plastics, 2024, 38(8): 8-12. |
[2] | WU Xiongjie, TAO Qiang, ZHU Dongbo, CHENG Jinsong, CHU Yu, XU Lei. Study on material identification and total migration of biodegradable plastic shopping bags used for food contact [J]. China Plastics, 2022, 36(5): 127-132. |
[3] | YAO Yi, ZHANG Erjie, LU Changli, WANG Chaojun, JIAO Jian, ZENG Xiangbin. Influence of food contact regulations on the development of PBS [J]. China Plastics, 2022, 36(10): 125-130. |
[4] | LI Xiangyang, YANG Linzhu, ZHAI Guoqiang, GAO Wanqin, WANG Kezhi, LI Xungang. Effect of Nucleating Agent on Crystallization and Properties of Poly(butylene succinate) [J]. China Plastics, 2021, 35(8): 146-151. |
[5] | DIAO Xiaoqian, WENG Yunxuan, FU Ye, ZHOU Yingxin. Review of Applications and Performance Evaluation Methods of Biodegradable Plastics [J]. China Plastics, 2021, 35(8): 152-161. |
[6] | Qiang HUANG . Advances in Modification of Three Kinds of Biodegradable Plastics [J]. China Plastics, 2011, 25(11): 1-4 . |
[7] | FENG Yanhong ZHANG Yeqing QU Jinping HE Hezhi. Research Progress in Surface Modification of Fibers in Biodegradable Plastics/Plant Fiber Composites [J]. China Plastics, 2011, 25(10): 50-54 . |
[8] | . Aminofunctional Modification of Graphene Oxide Sheets and Its Composite with Epoxy Resin [J]. China Plastics, 2011, 25(08): 28-33 . |
[9] | XU Guo-zhi. Structure and Property of Fully Biodegradable Poly(butylene succinate)/Poly(butylene adipate/Terephthalate)(PBS/PBAT) Blends [J]. China Plastics, 2009, 23(08): 18-21 . |
[10] | WENG Yun-xuan, NIU Li-jie, XU Guo-zhi. Production Situation and Development Trend of Biodegradable Plastics in the World [J]. China Plastics, 2008, 22(12): 1-5 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||