京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (10): 103-113.DOI: 10.19491/j.issn.1001-9278.2024.10.019
• Review • Previous Articles Next Articles
XIAO Yang, YUE Nan, GUO Xuezhong, LU Bo(), FENG Yuezhan, HUANG Ming, LIU Chuntai
Received:
2024-07-31
Online:
2024-10-26
Published:
2024-10-21
CLC Number:
XIAO Yang, YUE Nan, GUO Xuezhong, LU Bo, FENG Yuezhan, HUANG Ming, LIU Chuntai. Research progress in vitrimer⁃based carbon⁃fiber⁃reinforced composites and their molding methods[J]. China Plastics, 2024, 38(10): 103-113.
动态键类型 | 类玻璃高分子基体 | 拉伸强度/MPa | 层间剪切强度/MPa | 回收方法 | 回收时间/温度 | 文献编号 |
---|---|---|---|---|---|---|
酯键 | 双酚A二缩水甘油醚 | 90 | - | 乙二醇 | 4 h/180 ℃ | [ |
衣康酸基环氧树脂 | 423 | 45 | 氢氧化钠 | 5 h/25 ℃ | [ | |
桐油基三甘油酯 | 541 | - | 乙醇胺 | 1 h/90 ℃ | [ | |
双酚A二缩水甘油醚 | 495 | - | 乙醇胺 | 1 h/100 ℃ | [ | |
环氧氯丙烷 | 120 | - | 乙醇 | 1 h/25 ℃ | [ | |
甘油三缩水甘油醚 | 585 | 43 | 乙二醇 | 12 h/180 ℃ | [ | |
二硫键 | 双(4⁃缩水甘油氧基苯基)二硫化物 | 334 | - | 二硫苏糖醇 | 1 h/90 ℃ | [ |
愈创木酚环氧树脂 | - | - | 巯基乙醇 | 25 ℃ | [ | |
双酚A二缩水甘油醚 | 401 | - | 巯基乙醇 | 24 h/100 ℃ | [ | |
亚胺键 | 香草醛 | 763 | - | 盐酸 | 15 h/25 ℃ | [ |
香草醛 | 505 | - | 盐酸 | 24 h/60 ℃ | [ | |
超支化聚酰亚胺 | 681 | 32 | 磷酸 | 8 h/90 ℃ | [ | |
环氧大豆油 | 145 | - | 盐酸 | 24 h/25 ℃ | [ | |
硼酯键 | 硼酸三聚体 | 569 | - | 乙醇 | 4 h/95 ℃ | [ |
硼化三嵌段共聚物 | 730 | - | 频哪醇 | 12 h/65 ℃ | [ | |
环氧亚麻籽油 | 220 | - | 乙醇 | 3 h/75 ℃ | [ | |
二硒键 | 双酚A二缩水甘油醚 | 650 | - | 二硒化物 | 12 h/40 ℃ | [ |
六氢三嗪键 | 端超支化环氧 | 365 | 76 | 磷酸 | 24 h/25 ℃ | [ |
动态键类型 | 类玻璃高分子基体 | 拉伸强度/MPa | 层间剪切强度/MPa | 回收方法 | 回收时间/温度 | 文献编号 |
---|---|---|---|---|---|---|
酯键 | 双酚A二缩水甘油醚 | 90 | - | 乙二醇 | 4 h/180 ℃ | [ |
衣康酸基环氧树脂 | 423 | 45 | 氢氧化钠 | 5 h/25 ℃ | [ | |
桐油基三甘油酯 | 541 | - | 乙醇胺 | 1 h/90 ℃ | [ | |
双酚A二缩水甘油醚 | 495 | - | 乙醇胺 | 1 h/100 ℃ | [ | |
环氧氯丙烷 | 120 | - | 乙醇 | 1 h/25 ℃ | [ | |
甘油三缩水甘油醚 | 585 | 43 | 乙二醇 | 12 h/180 ℃ | [ | |
二硫键 | 双(4⁃缩水甘油氧基苯基)二硫化物 | 334 | - | 二硫苏糖醇 | 1 h/90 ℃ | [ |
愈创木酚环氧树脂 | - | - | 巯基乙醇 | 25 ℃ | [ | |
双酚A二缩水甘油醚 | 401 | - | 巯基乙醇 | 24 h/100 ℃ | [ | |
亚胺键 | 香草醛 | 763 | - | 盐酸 | 15 h/25 ℃ | [ |
香草醛 | 505 | - | 盐酸 | 24 h/60 ℃ | [ | |
超支化聚酰亚胺 | 681 | 32 | 磷酸 | 8 h/90 ℃ | [ | |
环氧大豆油 | 145 | - | 盐酸 | 24 h/25 ℃ | [ | |
硼酯键 | 硼酸三聚体 | 569 | - | 乙醇 | 4 h/95 ℃ | [ |
硼化三嵌段共聚物 | 730 | - | 频哪醇 | 12 h/65 ℃ | [ | |
环氧亚麻籽油 | 220 | - | 乙醇 | 3 h/75 ℃ | [ | |
二硒键 | 双酚A二缩水甘油醚 | 650 | - | 二硒化物 | 12 h/40 ℃ | [ |
六氢三嗪键 | 端超支化环氧 | 365 | 76 | 磷酸 | 24 h/25 ℃ | [ |
1 | Shi X H, Xu Y J, Long J W, et al. Layer⁃by⁃layer assembled flame⁃retardant architecture toward high⁃performance carbon fiber composite [J]. Chemical Engineering Journal, 2018, 353: 550⁃558. |
2 | Zhuang X, Ma J, Liu F, et al. Characterization of hydrothermal aging induced voids in carbon fiber reinforced epoxy resin composites using micro⁃computed tomography [J]. Polymer Degradation and Stability, 2022, 206: 110198. |
3 | Pansare A V, Khairkar S R, Shedge A. A., et al. In situ nanoparticle embedding for authentication of epoxy composites [J]. Advanced Materials, 2018, 30(33): 1801523. |
4 | Forintos N, Czigany T. Multifunctional application of carbon fiber reinforced polymer composites: electrical properties of the reinforcing carbon fibers⁃a short review [J]. Composites Part B⁃Engineering, 2019, 162: 331⁃343. |
5 | Yu K, Shi Q, Dunn M L, et al. Carbon fiber reinforced thermoset composite with near 100 % recyclability [J]. Advanced Functional Materials, 2016, 26(33): 6 098⁃6 106. |
6 | Zou W, Dong J, Luo Y, et al. Dynamic covalent polymer networks: from old chemistry to modern day innovations [J]. Advanced Materials, 2017, 29(14): 1606100. |
7 | Denissen W, Winne J, Du Prez F. Vitrimers: permanent organic networks with glass⁃like fluidity, Chem [J]. Sci, 2016, 7(1): 30⁃38. |
8 | Vidal J, Hornero C, Garcia R, et al. Use of covalent dynamic networks as binders on epoxy‐based carbon fiber composites: effect on properties, processing, and recyclability [J]. Polymer Composites, 2023, 44(11): 7 444⁃7 456. |
9 | Feng X, Li G. Room⁃temperature self⁃healable and mechanically robust thermoset polymers for healing delamination and recycling carbon fibers [J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53 099⁃53 110. |
10 | Taynton P, Ni H, Zhu C, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks [J]. Advanced Materials, 2016, 28(15): 2 904⁃2 909. |
11 | Zhou Z, Kim S, Bowland C C, et al. Unraveling a path for multi⁃cycle recycling of tailored fiber⁃reinforced vitrimer composites [J]. Cell Reports Physical Science, 2022, 3(9): 101036. |
12 | Ma X, Xu H, Xu Z, et al. Closed⁃loop recycling of both resin and fiber from high⁃performance thermoset epoxy/carbon fiber composites [J]. ACS Macro Letters, 2021, 10(9): 1 113⁃1 118. |
13 | 张 希. 可多次塑型、易修复及耐低温的三维动态高分子结构 [J]. 高分子学报, 2016 (6): 685⁃687. |
ZHANG X. Reconfigurable,easy repairable and low⁃temperature resistant dynamic 3D polymer structures [J]. Acta Polymerica Sinica, 2016 (6): 685⁃687. | |
14 | Montarnal D, Capelot M, Tournilhac F, et al. Silica⁃like malleable materials from permanent organic networks [J]. Science, 2011, 334(6058): 965⁃968. |
15 | 阮芳涛, 施 建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展 [J]. 纺织学报, 2019, 40(6): 153⁃158. |
RUAN F T, SHI J, XU J J, et al. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(6): 153⁃158. | |
16 | Li W, Xiao L, Huang J, et al. Bio⁃based epoxy vitrimer for recyclable and carbon fiber reinforced materials: synthesis and structure⁃property relationship [J]. Composites Science and Technology, 2022, 227: 109575. |
17 | Liu Y, Wang B, Ma S, et al. Catalyst⁃free malleable, degradable, bio⁃based epoxy thermosets and its application in recyclable carbon fiber composites [J]. Composites Part B: Engineering, 2021, 211: 108654. |
18 | Xu Y Z, Dai S L, Zhang H B, et al. Reprocessable, self⁃adhesive, and recyclable carbon fiber⁃reinforced composites using a catalyst⁃free self⁃healing bio⁃based vitrimer matrix [J]. Acs Sustainable Chemistry & Engineering, 2021, 9(48): 16 281⁃16 290. |
19 | Li W, Chang Q, Xiao L, et al. Readily recyclable, auto⁃catalyzed tung oil⁃derived vitrimers and carbon fiber⁃reinforced composites [J]. Acs Applied Polymer Materials, 2023, 5(6): 4 498⁃4 508. |
20 | Yu L, Zhu C, Sun X, et al. Rapid fabrication of malleable fiber reinforced composites with vitrimer powder [J]. Acs Applied Polymer Materials, 2019, 1(9): 2 535⁃2 542. |
21 | Zhang W, Wu J, Gao L, et al. Recyclable, reprocessable, self⁃adhered and repairable carbon fiber reinforced polymers using full biobased matrices from camphoric acid and epoxidized soybean oil [J]. Green Chemistry, 2021, 23(7): 2 763⁃2 772. |
22 | Xu Y, Zhang H, Dai S, et al. Hyperbranched polyester catalyzed self⁃healing bio⁃based vitrimer for closed⁃loop recyclable carbon fiber⁃reinforced polymers [J]. Composites Science and Technology, 2022, 228: 109676. |
23 | Chen J H, Liu B W, Lu J H, et al. Catalyst⁃free dynamic transesterification towards a high⁃performance and fire⁃safe epoxy vitrimer and its carbon fiber composite [J]. Green Chemistry, 2022, 24(18): 6 980⁃6 988. |
24 | Liu T, Hao C, Shao L, et al. Carbon fiber reinforced epoxy vitrimer: robust mechanical performance and facile hydrothermal decomposition in pure water [J]. Macromolecular Rapid Communications, 2021, 42(3): 2000458. |
25 | Chen M, Luo W, Lin S, et al. Recyclable, reprocessable, self⁃healing elastomer⁃like epoxy vitrimer with low dielectric permittivity and its closed⁃loop recyclable carbon fiber reinforced composite [J]. Composites Part B: Engineering, 2023, 257: 110666. |
26 | Si H, Zhou L, Wu Y, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks [J]. Composites Part B: Engineering, 2020, 199: 108278. |
27 | Ruiz de Luzuriaga A, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber⁃reinforced thermoset composites[J]. Materials Horizons, 2020, 7(9): 2 460⁃2 461. |
28 | Martinez⁃Diaz D, Cortés A, Jiménez⁃Suárez A, et al. Hardener isomerism and content of dynamic disulfide bond effect on chemical recycling of epoxy networks [J]. Acs Applied Polymer Materials, 2022, 4(7): 5 068⁃5 076. |
29 | Tang S, Lin H, Dong K, et al. Closed⁃loop recycling and degradation of guaiacol⁃based epoxy resin and its carbon fiber reinforced composites with SS exchangeable bonds [J]. Polymer Degradation and Stability, 2023, 210: 110298. |
30 | Liu Y Y, Liu G L, Li Y D, et al. Biobased high⁃performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites [J]. Acs Sustainable Chemistry & Engineering, 2021, 9(12): 4 638⁃4 647. |
31 | Nabipour H, Wang X, Kandola B, et al. A bio⁃based intrinsically flame⁃retardant epoxy vitrimer from furan derivatives and its application in recyclable carbon fiber composites [J]. Polymer Degradation and Stability, 2023, 207: 110206. |
32 | Wang S, Ma S, Li Q, et al. Facile in situ preparation of high⁃performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite [J]. Green Chemistry, 2019, 21(6): 1 484⁃1 497. |
33 | Wang Y, Xu A, Zhang L, et al. Recyclable carbon fiber reinforced vanillin‐based polyimine vitrimers: degradation and mechanical properties study [J]. Macromolecular Materials and Engineering, 2022, 307(7): 2100893. |
34 | Memon H, Wei Y, Zhang L, et al. An imine⁃containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites [J]. Composites Science and Technology, 2020, 199: 108314. |
35 | Liu Y Y, He J, Li Y D, et al. Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite [J]. Composites Communications, 2020, 22: 100445. |
36 | Chen B, Lai G, Liu Z, et al. Silicon⁃bridged epoxy vitrimers with antibacterial and UV⁃blocking properties [J]. Acs Applied Polymer Materials, 2023, 5(8): 6 421⁃6 428. |
37 | Hong J, Hong Y, Jeong J, et al. Robust biobased vitrimers and its application to closed⁃loop recyclable carbon fiber⁃reinforced composites [J]. Acs Sustainable Chemistry & Engineering, 2023, 11(38): 14 112⁃14 123. |
38 | Rahman M A, Karunarathna M S, Bowland C C, et al. Tough and recyclable carbon⁃fiber composites with exceptional interfacial adhesion via a tailored vitrimer⁃fiber interface [J]. Cell Reports Physical Science, 2023, 4(12): 101695. |
39 | Sangaletti D, Ceseracciu L, Marini L, et al. Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites [J]. Resources, Conservation and Recycling, 2023, 198: 107205. |
40 | An X, Ding Y, Xu Y, et al. Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber⁃reinforced thermoset composites [J]. Reactive and Functional Polymers, 2022, 172: 105189. |
41 | Otera J. Transesterification [J]. Chemical Reviews, 1993, 93(4): 1 449⁃1 470. |
42 | Han J, Liu T, Hao C, et al. A catalyst⁃free epoxy vitrimer system based on multifunctional hyperbranched polymer [J]. Macromolecules, 2018, 51(17): 6 789⁃6 799. |
43 | Humphrey R, Hawkins J. Reduction of aromatic disulfides with triphenylphosphine [J]. Analytical Chemistry, 1964, 36(9): 1 812⁃1 814. |
44 | Singh R, Kats L. Catalysis of reduction of disulfide by selenol [J]. Analytical biochemistry, 1995, 232(1): 86⁃91. |
45 | Bach R D, Dmitrenko O, Thorpe C. Mechanism of thiolate⁃ disulfide interchange reactions in biochemistry [J]. The Journal of Organic Chemistry, 2008, 73(1): 12⁃21. |
46 | Mai V D, Shin S R, Lee D S, et al. Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with schiff base of vanillin and hexane-1,6⁃diamine [J]. Polymers, 2019, 11(2): 293. |
47 | 王艳萍, 刘晓琴, 井新利, 等. 环氧树脂类玻璃高分子研究进展 [J]. 化学通报, 2021, 84(4): 313⁃321. |
WANG Y P, LIU X Q, JING X L, et al. Research progress in epoxy vitrimer [J]. Chemistry, 2021, 84(4): 313⁃321. | |
48 | Wanasinghe S V, Dodo O J, Konkolewicz D. Dynamic bonds: adaptable timescales for responsive materials [J]. Angewandte Chemie International Edition, 2022, 61(50): e202206938. |
49 | Li M, Yu H, Liu X, et al. Dual rapid self⁃healing and easily recyclable carbon fiber reinforced vitrimer composites [J]. Chemical Engineering Journal, 2024, 480: 148147. |
50 | Xia J, Li T, Lu C, et al. Selenium⁃containing polymers: perspectives toward diverse applications in both adaptive and biomedical materials [J]. Macromolecules, 2018, 51(19): 7 435⁃7 455. |
51 | Xu H, Hu J, Liu X, et al. Interface strengthening and high⁃value recycling of epoxy resin/carbon fiber fabric composites [J]. Chemical Engineering Journal, 2023, 465: 142998. |
52 | Chabert E, Vial J, Cauchois J P, et al. Multiple welding of long fiber epoxy vitrimer composites [J]. Soft Matter, 2016, 12(21): 4 838⁃4 845. |
53 | 吴伟萍, 王威力. 树脂基复合材料RTM工艺的研究进展 [J]. 纤维复合材料, 2022, 39(2): 91⁃94. |
WU W P, WANG W L. Research progress of RTM for resin matrix composites [J]. Fiber Composites, 2022, 39(2): 91⁃94. | |
54 | 汪 东, 李丽英, 柯红军, 等. 高性能可回收环氧树脂及其复合材料的制备与性能研究 [J]. 高分子学报, 2020, 51(3): 303⁃310. |
WANG D, LI L Y, KE H J, et al. Preparation and properties of recyclable high⁃performance epoxy resins and composites [J]. Acta Polymerica Sinica, 2020, 51(3): 303⁃310. | |
55 | 滕凌虹, 曹伟伟, 朱 波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展 [J]. 材料工程, 2021, 49(2): 42⁃53. |
TENG L H, CAO W W, ZHU B, et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg [J]. Journal of Materials Engineering, 2021, 49(2): 42⁃53. | |
56 | Denissen W, De Baere I, Van Paepegem W, et al. Vinylogous urea vitrimers and their application in fiber reinforced composites [J]. Macromolecules, 2018, 51(5): 2 054⁃2 064. |
57 | Wang S, Xing X, Zhang X, et al. Room⁃temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds [J]. Journal of Materials Chemistry A, 2018, 6(23): 10 868⁃10 878. |
58 | 刘 嘉, 周 蕾, 罗文东, 等. 复合材料成型技术研究现状 [J]. 橡塑技术与装备, 2022, 48(8): 27⁃31. |
LIU J, ZHOU L, LUO W D, et al. Research status of composite material forming technology [J]. China Rubber/Plastics Technology and Equipment, 2022, 48(8): 27⁃31. | |
59 | Hernández S, Sket F, González C, et al. Optimization of curing cycle in carbon fiber⁃reinforced laminates: void distribution and mechanical properties [J]. Composites Science and Technology, 2013, 85: 73⁃82. |
60 | Kandemir A, Longana M L, Hamerton I, et al. Developing aligned discontinuous flax fibre composites: Sustainable matrix selection and repair performance of vitrimers [J]. Composites Part B⁃Engineering, 2022, 243: 110139. |
61 | Zureick A, Scott D. Short⁃term behavior and design of fiber⁃reinforced polymeric slender members under axial compression [J]. Journal of Composites for Construction, 1997, 1(4): 140⁃149. |
62 | Tena I, Sarrionandia M, Torre J, et al. The effect of process parameters on ultraviolet cured out of die bent pultrusion process [J]. Composites Part B: Engineering, 2016, 89: 9⁃17. |
63 | Aranberri I, Landa M, Elorza E, et al. Thermoformable and recyclable CFRP pultruded profile manufactured from an epoxy vitrimer [J]. Polymer Testing, 2021, 93: 106931. |
64 | 宋晨曦, 林海涛, 赖恩平, 等. 碳纤维增强热塑性复合材料成型工艺的研究进展 [J]. 纺织科学与工程学报, 2023, 40(4): 86⁃93. |
SONG C X, LIN H T, LAI E P, et al. Research progress of the forming process of carbon fiber reinforced thermoplastic composites [J]. Journal of Textile Science and Engineering, 2023, 40(4): 86⁃93. | |
65 | Jiang Z, Diggle B, Tan M L, et al. Extrusion 3D printing of polymeric materials with advanced properties [J]. Advanced Science, 2020, 7(17): 2001379. |
66 | Shi Q, Yu K, Kuang X, et al. Recyclable 3D printing of vitrimer epoxy [J]. Materials Horizons, 2017, 4(4): 598⁃607. |
[1] | QU Daopeng, ZHANG Tao, HUA Chenxi, SONG Xinyu, CHENG Changli, LIU Yu, WANG Zhenyu. 3D printing of epoxy⁃based composites with high strength and electromagnetic interference shielding ability [J]. China Plastics, 2024, 38(9): 24-29. |
[2] | SUN He, HE Xin, LUO Tongyu, JI Xin, LIAO Qiling, ZHANG Yuxia, ZHOU Hongfu. Study on electromagnetic interference shielding properties of ABS/CNTs/Fe3O4 composite and its bimodal foam [J]. China Plastics, 2024, 38(8): 46-52. |
[3] | GE Jiarong, GUAN Guoying, YAO Zijia, TONG Fangqiang, WANG Boqun. Integrated manufacturing technology for composite rudder of large⁃sized unmanned aerial vehicle [J]. China Plastics, 2024, 38(8): 76-80. |
[4] | ZHANG Xinpeng, XU Jun, DU Xiyan, GUO Baohua. Study on modification and properties of starch esterified composite nano montmorillonite [J]. China Plastics, 2024, 38(8): 8-12. |
[5] | XU Chuanhao, SHI Zhenwu, CHI Bo. Effect of BMH type warm mixture on fatigue properties of waste plastic/SBS composite modified asphalt [J]. China Plastics, 2024, 38(8): 94-99. |
[6] | WEI Jia, LIU Kai, PENG Lijuan, TIAN Yangyang, ZHAO Lin, LI Yanhong, YANG Peipei, LI Songwei, LU Bo. Preparation and adsorption properties of chitosan/polyaniline⁃GO nicotine molecule⁃imprinted composites [J]. China Plastics, 2024, 38(7): 32-36. |
[7] | CAO Shuai, JIANG Tao, LIU Xiong, WANG Ying, LI Wenge, WU Xinfeng. Research progress in preparation of thermal conductive composites with MXene [J]. China Plastics, 2024, 38(6): 139-144. |
[8] | LIU Shuai, ZHAO Zihao, YU Ying, YANG Jiaxin, ZHANG Yang. Preparation and dielectric properties of core⁃shell structural carbon⁃fiber felt@polyaniline composite [J]. China Plastics, 2024, 38(6): 25-30. |
[9] | SU Yuhang, ZHOU Yuhong, LIN Yuanzhi, MAO Jianquan, WANG Yongxiang, LIU Xiang, YU Li, KE Junmu. Effect of elastomer on the properties of glue⁃free PP/EVA composite films [J]. China Plastics, 2024, 38(6): 44-50. |
[10] | CAO Hui, TANG Jing, REN Weitao, ZHOU Qiong. Fabrication of PES/modified UiO⁃66 composite membrane for separation of heavy metal ions [J]. China Plastics, 2024, 38(5): 14-18. |
[11] | WANG Han, LIANG Jinhua, GAO Zhenguo, JIANG Wei, ZHOU Hao. Mechanical properties and repair efficiency of self⁃repairing microencapsulated epoxy resin [J]. China Plastics, 2024, 38(5): 40-46. |
[12] | FENG Jingming. Design and applications of polyurethane composite isolator in power equipment [J]. China Plastics, 2024, 38(5): 73-77. |
[13] | LI Xuan, HE Yu, MING Bai, ZHANG Xiaoyan, LIU Fuhua, LAI Sheng. Research progress in forming technology of polyimide resin⁃based friction materials [J]. China Plastics, 2024, 38(4): 116-123. |
[14] | WANG Xiaohui, DONG Liming, GU Junjie, YAO Bing, CHEN Yan, LI Jing. Synthesis of 2,6⁃monosubstituted bisphenol A isophthalaldehyde phenolic resin and its applications in reversible thermochromic composite NiBR film [J]. China Plastics, 2024, 38(4): 32-39. |
[15] | ZHAO Xiaohong, LU Xin. Effect of starch modification on structure and properties of starch/PBAT/calcium carbonate composites [J]. China Plastics, 2024, 38(4): 40-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||