京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (11): 118-124.DOI: 10.19491/j.issn.1001-9278.2025.11.018
• Plastic and Environment • Previous Articles
MENG Kun1,2(
), CAO Jinpeng2, ZHANG Yanjun2, WANG Erlong2, CHEN Minjian1,2
Received:2025-05-16
Online:2025-11-26
Published:2025-11-21
CLC Number:
MENG Kun, CAO Jinpeng, ZHANG Yanjun, WANG Erlong, CHEN Minjian. Current technologies and challenges for waste plastic recycling[J]. China Plastics, 2025, 39(11): 118-124.
| 热裂解 | ||||
| 溶剂分解(以PET为主) | ||||
| 加氢裂解 |
| 热裂解 | ||||
| 溶剂分解(以PET为主) | ||||
| 加氢裂解 |
| [1] | VUPPALADADIYAM S S V, VUPPALADADIYAM A K, SAHOO A, et al. Waste to energy: Trending key challenges and current technologies in waste plastic management [J].Science of the Total Environment, 2024,913:169436. |
| [2] | 唐茂株.2022—2023年世界塑料工业进展(I):通用塑料[J].塑料工业,2024,52(3):1⁃19. |
| [3] | BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution [J]. Science, 2020, 369: 1 515⁃1 518. |
| [4] | ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021, 282(2): 124523. |
| [5] | 中国物资再生协会.2024中国再生资源回收行业发展报告[J].资源再生,2024(7):27⁃38. |
| [6] | 徐灿,崔安琪,梁进欣,等.废弃塑料的化学回收:方法,现状及前景展望[J].塑料工业,2024,52(1):9⁃17. |
| [7] | SCHYNS Z O G, SHAVER M P. Mechanical recycling of packaging plastics: a review[J]. Macromol Rapid Commun,2021,42: 2000415. |
| [8] | ZHAO Y B, LV X D, NI H G. Solvent⁃based separation and recycling of waste plastics: a review [J]. Chemosphere, 2018, 209: 707⁃720. |
| [9] | VOLLMER I, JENKS M J F, ROELANDS M C P, et al. Beyond mechanical recycling: giving new life to plastic waste[J]. Angewandte Chemie International Edition, 2020,59(36):15 402⁃15 423. |
| [10] | RAGAERT K, DELVA L, GEEM K V. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017,69(11):24⁃58. |
| [11] | ASCHENBRENNER D, GROS J, FANGEROW N, et al. Recyclebot—using robots for sustainable plastic recycling[J]. Science Direct, 2023,116:275⁃280. |
| [12] | ZHENG K, WU Y, HU Z X, et al. Progress and perspective for conversion of plastic wastes into valuable chemicals[J]. Chemical Society Reviews,2023, 52 (1): 8⁃29. |
| [13] | ELLIS L D, RORRER N A, SULLIVAN K P, et al. Beckham, Chemical and biological catalysis for plastics recycling and upcycling[J]. Nature Catalysis, 2021, 4 (7) :539⁃556. |
| [14] | AL⁃SALEM S M, ANTELAVA A, CONSTANTINOU A, et al. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW) [J]. Journal of Environmental Management, 2017, 197 (7) :177⁃198. |
| [15] | KIN D, HAN M, KIN N, et al. Waste Plastic Pyrolysis Industry: Current Status and Prospects [J]. Korean Society of Environmental Engineers, 2024, 46(7): 395⁃407. |
| [16] | ALI A, USAMA A, NABEEL A, et al. A review of hydrogen generation through gasification and pyrolysis of waste plastic and tires: Opportunities and challenges [J]. International Journal of hydrogen energy,2024, 77(8):1 185⁃1 204. |
| [17] | BEHZAD V, SOHEIL V, HYUNJIN K, et al. Production of light olefins and monocyclic aromatic hydrocarbons from the pyrolysis of waste plastic straws over high⁃silica zeolite⁃based catalysts[J]. Environmental Research, 2024, 245(3):118076. |
| [18] | DOMINIK H, SZABINA T, NORBERT M. Thermo⁃catalytic co⁃pyrolysis of waste plastic and hydrocarbon by⁃products using β⁃zeolite[J]. Clean Technologies and Environmental Policy, 2024, 26 (1):235⁃244. |
| [19] | LIU Y X, TEE M Y, MONG G R, et al. Kinetic and Synergism Analysis on Pyrolysis of Waste Plastic Mixture through TGA [J]. Chemical engineering transactions, 2024, 113(11):2 283. |
| [20] | KIM D, YOON Y M, JANG J J,et al. Development of a circulating fluidized bed for a 100 kg/day waste plastic pyrolysis⁃combustion system [J]. Chemical Engineering Journal, 2024, 499(11):156257. |
| [21] | CULSUM N T U, KISMANTO A, ZULDIAN P, et al. An overview of catalytic pyrolysis of plastic waste over base catalysts [J]. Journal of Analytical and Applied Pyrolysis, 2024, 183(10): 106828. |
| [22] | SONG J X, LV J B, PAN Y H, et al. Low⁃temperature hydrogen production from waste polyethylene by nonthermal plasma (NTP)⁃assisted catalytic pyrolysis using NiCeOx/β catalyst[J]. Chemical Engineering Journal, 2024, 490(6):151676. |
| [23] | PETRA K, JANOS B, BENCE K, et al. Glass wool recycling by water⁃based solvolysis [J]. Chem Engineering, 2024, 8(5): 93. |
| [24] | ZHANG X H, SIBARI R, CHAKRABORTY S, et al. Epoxy‐based carbon fiber‐reinforced plastics recycling via solvolysis with non‐oxidizing methanesulfonic acid [J]. Chemie ingenieur technik, 2024, 96(7):987⁃997. |
| [25] | LI J, SONG F M, GUO J Z, et al. Environmental protection and sustainable waste⁃to⁃energy scheme through plastic waste gasification in a combined heat and power system[J]. Process safety and environmental protection, 2024, 190(10): 1 562⁃1 574. |
| [26] | FRANCESCO P, FILOMENA A, CARMINE B, et al. Mixed plastic waste gasification in a large pilot⁃scale fluidized bed reactor operated with oxygen⁃enriched air and steam[J]. Energy & fuels, 2024, 38 (22):22 172⁃22 181. |
| [27] | ZHANG P, LIANG C, WU M D, et al.Sustainable microwave⁃driven CO2 gasification of plastic waste for high⁃yield H2 and CO production[J]. Applied catalysis B, Environmental, 2024, 345(5): 123718. |
| [28] | AZAM M U, FERNANDES A, FERREIRA M J, et al. Pore⁃structure engineering of hierarchical β Zeolites for the enhanced hydrocracking of waste plastics to liquid fuels [J]. ACS catalysis, 2024,14 (21):16 148⁃16 165. |
| [29] | ZHANG G Q, MAO Q G, YUE Y Q, et al. Ni⁃based catalysts supported on Hbeta zeolite for the hydrocracking of waste polyolefin[J]. RSC advances, 2024,14 (23):15 856⁃15 861. |
| [30] | ZHONG X, LIU J, GAO L, et al. Constructing the Al deficiency in Si⁃O(H)⁃Al units based on Pt/ZSM-5 for enhanced hydrocracking of polyethylene into high⁃quality liquid fuel[J]. Nano research, 2024,17 (11):10 088⁃10 098. |
| [31] | ASGHAR W, QAZI I A, ILYAS H, et al. Comparative solid phase photocatalytic degradation of polythene films with doped and undoped TiO2 nanoparticles [J]. Journal of Nanomaterials, 2010(8):461930. |
| [32] | ZHAO X, LI Z W, CHEN Y, et al. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation [J]. Applied surface science, 254(6):1 825⁃1 829. |
| [33] | VERMA R, SINGH S, DALAI M K, et al. Photocatalytic degradation of polypropylene film using TiO2⁃based nanomaterials under solar irradiation[J]. Materials and Design, 2017, 133 (10):10⁃18. |
| [34] | GARCÍA⁃MONTELONGO X L, MARTÍNEZ⁃DE LA CRUZ A, AZQUEZ⁃RODRÍGUEZ S, et al. Photo⁃oxidative degradation of TiO2/polypropylene films [J]. Materials Research Bulletin, 2014, 51(3):56⁃62. |
| [35] | SHANG J, CHAI M, ZHU Y F. Solid⁃phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst[J]. Journal of solid state chemistry, 2003,174(1):104⁃110. |
| [36] | NABI I, BACHA A, LI K J, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film [J]. Iscience, 2020, 23(7):101326. |
| [37] | CHO S, CHOI W. Solid⁃phase photocatalytic degradation of PVC⁃TiO2 polymer composites [J]. Journal of photochemistry and photobiology A:Chemistry, 2001, 143(2/3):221⁃228. |
| [38] | GU C, LI C F, MINEZAWA N, et al. Multi⁃stimuli⁃responsive polymer degradation by polyoxometalate photocatalysis and chloride ions[J]. Nanoscale, 2024, 16 (16): 813⁃819. |
| [39] | NAGARAJ S, THANIKAIVELAN P. Harnessing protein waste into reduced graphitic carbon oxide‐copper‐collagen nanocomposite for visible light photocatalytic degradation of nano plastics[J]. Advanced sustainable systems, 2024,8 (7): 487. |
| [40] | WAN Y, WANG H J, LIU J J, et al. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate[J]. Journal of hazardous Materials, 2023, 452(6):131375. |
| [41] | UEKERT T, KUEHNEL M F, WAKERLEY D W, et al. Plastic waste as a feedstock for solar⁃drive H2 generation[J]. Energy and environmental science, 2018(10):2 853⁃2 857. |
| [42] | JIAO X C, ZHENG K, CHEN Q X, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions[J]. Angewandte chemie international edition,2020, 59:(36):15 497⁃15 501. |
| [43] | MONTAZER Z, HABIBI⁃NAJAFI M B, MOHEBBI M, et al. Microbial degradation of UV⁃pretreated low⁃density polyethylene films by novel polyethylene⁃degrading bacteria isolated from plastic⁃dump soil[J]. Journal of Polymers and the Environment, 2018, 26(5):3 613⁃3 625. |
| [44] | JAIN K, BHUNIA H, REDDY M S. Degradation of polypropylene⁃poly⁃Llactide blend by bacteria isolated from compost [J]. Bioremediation Journal, 2018, 22(3⁃4):73⁃90. |
| [45] | GIACOMUCCI L, RADDADI N, SOCCIO M, et al. Polyvinyl chloridebiodegradation by Pseudomonas citronellolis and Bacillus flexus[J]. New biotechnology, 2019, 52 (9):35⁃41. |
| [46] | SHILPA, BASAK N, MEENA S S. Biodegradation of low⁃density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite[J]. Biodegradation, 2024,35 (5):641⁃655. |
| [47] | TOURNIER V, TOPHAM C M, GILLES A, et al. An engineered PET depolymerase to break down and recycle plastic bottles [J]. Nature,2020, 580 (4):216⁃219. |
| [48] | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science,2016, 351 (6278): 1 196⁃1 199. |
| [1] | FENG Shuo, LIN Xiaoqi, ZHU Yanli, GAO Weichang, WENG Yunxuan, ZAHNG Caili. Chemical recovery and life cycle assessment of biodegradable plastic PBAT: current situation, challenges and prospects [J]. China Plastics, 2025, 39(7): 102-111. |
| [2] | LIANG Yonghuang, LIU Jing, GE Dongqi. Overview of China’s plastic chemical recycling: status, problems, trends [J]. China Plastics, 2025, 39(7): 112-120. |
| [3] | ZHU Guangze, XIA Zhidong, ZHOU Wei, WANG Xiaolu, WU Yufeng, GUO Fu. Investigation on co⁃pyrolysis of polyester enamel wire and its pyrolysis product [J]. China Plastics, 2024, 38(8): 53-61. |
| [4] | HU Yanqing, HU Fan, ZHOU Jianchi, DOU Yibo. Research progress in upcycling of waste plastics [J]. China Plastics, 2024, 38(4): 79-87. |
| [5] | LUO Guanqun, ZHAO Le, PAN Yaqi. Study on co⁃pyrolysis characteristics and kinetics of waste PE and PET plastics [J]. China Plastics, 2024, 38(3): 86-93. |
| [6] | XU Zhiyang, ZHU Jun. Research progress in synthesis of 2,5⁃furanedicarboxylic acid through 5⁃hydroxymethylfurfural route [J]. China Plastics, 2024, 38(2): 61-69. |
| [7] | LIN Liangbin, ZHOU Weiming, XUE Hun, QIAN Qingrong, YANG Songwei, CAO Changlin, CHEN Qinghua. Progress of microplastic pollution control research based on photocatalytic degradation [J]. China Plastics, 2024, 38(12): 172-178. |
| [8] | ZHU Guangze, ZHOU Wei, XIA Zhidong, WANG Xiaolu, LI Bingyi, GUO Fu, WU Yufeng. Current situation and prospect of pyrolysis analysis technology of organic wastes [J]. China Plastics, 2023, 37(11): 101-116. |
| [9] | QUAN Shumiao, ZHANG Yanjun, SONG Xiaofei, DU Runping, YU Dan. Status and industrialization progress in dechlorination technologies for waste plastics [J]. China Plastics, 2022, 36(9): 122-130. |
| [10] | JIAO Zhiwei, WANG Kechen, ZHANG Yang, YANG Weimin. Performance of PVC/ABS composites filled with carbon black and talc powders based on carbon nano coating deposition [J]. China Plastics, 2022, 36(8): 10-15. |
| [11] | MA Teng, LIU Qianqian, WEI Xiaoli, SONG Haitao, LI Mingfeng. Influence and countermeasures of silicon and chlorine impurities on waste plastic pyrolysis oil [J]. China Plastics, 2022, 36(8): 127-134. |
| [12] | NI Junjie, GUO Rui, ZHANG Bing. Effect of pyrolysis regeneration technology of aramid material for police equipment based on temperature field optimization [J]. China Plastics, 2022, 36(6): 6-9. |
| [13] | TANG Yuanjun, LI Xuan, DONG Jun, LI Guoneng, LUO Guanqun, WANG Weimin, XU Yousheng. Multiscale thermogravimetric kinetics of waste polyvinyl chloride plastics [J]. China Plastics, 2022, 36(5): 89-98. |
| [14] | WANG Zhiwei, WU Mengge, CHEN Yan, GUO Shuaihua, LI Tiantian, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances in synergistic characteristics of co⁃pyrolysis derived from biomass and plastic [J]. China Plastics, 2022, 36(10): 149-158. |
| [15] | ZHOU Yingxin, WENG Yunxuan, ZHANG Caili, DIAO Xiaoqian, SONG Xinyu. Review of Recovery Technology and Standard Status of Poly(ethylene terephthalate) [J]. China Plastics, 2021, 35(8): 162-171. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||