京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (11): 108-117.DOI: 10.19491/j.issn.1001-9278.2025.11.017
• Additive • Previous Articles
ZHANG Zheng1(
), CHEN Le2, LI Jie1, DUAN Shun2, LI Changjin1, LI Fangquan1
Received:2024-11-13
Online:2025-11-26
Published:2025-11-21
CLC Number:
ZHANG Zheng, CHEN Le, LI Jie, DUAN Shun, LI Changjin, LI Fangquan. Research progress in photo⁃induced antimicrobial agents and their applications in antimicrobial protective equipment[J]. China Plastics, 2025, 39(11): 108-117.
| 项目 | 来源 | 激发光源 | 作用机制 | 产生活性氧种类 | 其他特点 |
|---|---|---|---|---|---|
| 无机类 | 金属/无机元素氧化物、石墨烯等无机物 | 多为紫外光,经掺杂后可发生吸光红移 | 激发后产生空穴、自由电子和活性氧或光热抗菌 | 羟基自由基、过氧化氢 | 颗粒直径多在纳米级范围内;大多耐高温,易于加工 |
| 有机类 | 合成蒽醌、二苯甲酮、染料类化合物 | 紫外⁃可见光 | 激发后与氧气反应生成活性氧 | 羟基自由基、单线氧、过氧化氢 | 多不耐高温,热加工受限;多为接枝改性加工 |
| 天然类 | 动植物提取物 | 紫外⁃可见光 | 激发后与氧气反应生成活性氧 | 羟基自由基、单线氧、过氧化氢 | 具有良好的生物安全性,部分物质在光照下易分解变性 |
| 项目 | 来源 | 激发光源 | 作用机制 | 产生活性氧种类 | 其他特点 |
|---|---|---|---|---|---|
| 无机类 | 金属/无机元素氧化物、石墨烯等无机物 | 多为紫外光,经掺杂后可发生吸光红移 | 激发后产生空穴、自由电子和活性氧或光热抗菌 | 羟基自由基、过氧化氢 | 颗粒直径多在纳米级范围内;大多耐高温,易于加工 |
| 有机类 | 合成蒽醌、二苯甲酮、染料类化合物 | 紫外⁃可见光 | 激发后与氧气反应生成活性氧 | 羟基自由基、单线氧、过氧化氢 | 多不耐高温,热加工受限;多为接枝改性加工 |
| 天然类 | 动植物提取物 | 紫外⁃可见光 | 激发后与氧气反应生成活性氧 | 羟基自由基、单线氧、过氧化氢 | 具有良好的生物安全性,部分物质在光照下易分解变性 |
| [1] | Ahmed F, Ahmed N, Pissarides C,et al. Why Inequality Could Spread Covid-19[J]. The Lancet Public Health, 2020, 5 (5): e240. |
| [2] | Oxford J S, Sefton A, Jackson R, et al. World War I May Have Allowed the Emergence of “Spanish” Influenza[J]. The Lancet infectious diseases, 2002, 2 (2):111⁃114. |
| [3] | Zumla A, Hui D S, Perlman S. Middle East Respiratory Syndrome[J]. The Lancet, 2015, 386 (9997):995⁃1 007. |
| [4] | Nyarko Y, Goldfrank L, Ogedegbe G, et al. Preparing for Ebola Virus Disease in West African Countries Not yet Affected: Perspectives from Ghanaian Health Professionals[J]. Globalization and health, 2015, 11 (1):1⁃6. |
| [5] | Mou J. In Research on the Impact of Covid19 on Global Economy [J].IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2020, p 032043. |
| [6] | World Health Organization[J]. COVID-19 Epidemiological Update, Edition 167, 17 May 2024. |
| [7] | Dolez P I, Marsha S, McQueen R H. Fibers and Textiles for Personal Protective Equipment: Review of Recent Progress and Perspectives on Future Developments[J]. Textiles, 2022, 2 (2):349⁃381. |
| [8] | Tuñón⁃Molina A, Takayama K, Redwan E M, et al. Protective Face Masks: Current Status and Future Trends[J]. ACS Applied Materials & Interfaces, 2021, 13 (48): 56 725⁃56 751. |
| [9] | Córdoba⁃Lanús E, García⁃Pérez O, Cazorla⁃Rivero S, et al. Persistence of Sars⁃Cov-2 Infection on Personal Protective Equipment (Ppe)[J]. BMC Infectious Diseases, 2021, 21 (1):1⁃6. |
| [10] | Kasloff S B, Leung A, Strong J E, et al. Stability of Sars⁃Cov-2 on Critical Personal Protective Equipment[J]. Scientific Reports, 2021, 11 (1):1⁃7. |
| [11] | Li B, Wang D, Lee M M, et al. Fabrics Attached with Highly Efficient Aggregation⁃Induced Emission Photosensitizer: Toward Self⁃Antiviral Personal Protective Equipment[J]. ACS nano, 2021, 15 (8):13 857⁃13 870. |
| [12] | Livingston E, Desai A, Berkwits M. Sourcing Personal Protective Equipment During the Covid-19 Pandemic[J]. Jama,2020, 323 (19):1 912⁃1 914. |
| [13] | Organization W H. Rational Use of Personal Protective Equipment for Coronavirus Disease (Covid-19) and Considerations During Severe Shortages[J].Interim Guidance, 6 April 2020; World Health Organization: 2020. |
| [14] | Sendra M, Pereiro P, Yeste M P, et al. Surgical Face Masks as a Source of Emergent Pollutants in Aquatic Systems: Analysis of Their Degradation Product Effects in Danio Rerio through Rna⁃Seq[J]. Journal of Hazardous Materials, 2022, 428:128186. |
| [15] | Marnn P, Claude N J, Oo T T, et al. Challenges of Mask Pollutants to Our Environment During Covid-19 Pandemic Period[J]. American Journal of Environment and Sustainable Development, 2021, 6 (4): 118⁃127. |
| [16] | Gao Y, Cranston R. Recent Advances in Antimicrobial Treatments of Textiles[J]. Textile Research Journal,2008, 78 (1): 60⁃72. |
| [17] | Liu Y, Ma K, Li R, et al. Antibacterial Cotton Treated with N⁃Halamine and Quaternary Ammonium Salt[J]. Cellulose, 2013, 20 (6):3 123⁃3 130. |
| [18] | Wang X, Su K, Tan L, et al. Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/Cs@ Mno2 Nanosheets Using near⁃Infrared Light[J]. ACS Applied Materials & Interfaces, 2019, 11 (16):15 014⁃15 027. |
| [19] | Jeffrey D. Chemicals Used as Disinfectants: Active Ingredients and Enhancing Additives[J]. Revue Scientifique et Technique⁃Office International des Epizooties, 1995, 14:57. |
| [20] | Schrank C L, Minbiole K P, Wuest W M. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome⁃Coronavirus-2? [J]. ACS Infectious Diseases, 2020, 6 (7): 1 553⁃1 557. |
| [21] | da Silva D J, Duran A, Cabral A D, et al. Questioning Zno, Ag, and Ag/Zno Nanoparticles as Antimicrobial Agents for Textiles: Do They Guarantee Total Protection against Bacteria and Sars⁃Cov-2? [J].Journal of Photochemistry and Photobiology B: Biology,2022, 234:112538. |
| [22] | Sun G, Worley S D. Chemistry of Durable and Regenerable Biocidal Textiles[J]. Journal of Chemical Education, 2005, 82 (1):60. |
| [23] | Sun G, Hong K H. Photo⁃Induced Antimicrobial and Decontaminating Agents: Recent Progresses in Polymer and Textile Applications[J]. Textile Research Journal, 2013, 83 (5):532⁃542. |
| [24] | Lee J Y, Choi J H. Sonochemical Synthesis of Ce⁃Doped Tio2 Nanostructure: A Visible⁃Light⁃Driven Photocatalyst for Degradation of Toluene and O⁃Xylene[J]. Materials, 2019, 12 (8):1 265. |
| [25] | Ren Y, Han Y, Li Z,et al. Ce and Er Co⁃Doped Tio2 for Rapid Bacteria⁃Killing Using Visible Light[J]. Bioactive materials, 2020, 5 (2):201⁃209. |
| [26] | Venieri D, Gounaki I, Binas V, et al. Inactivation of Ms2 Coliphage in Sewage by Solar Photocatalysis Using Metal⁃Doped Tio2 [J]. Applied Catalysis B: Environmental, 2015, 178:54⁃64. |
| [27] | Ni Y, Wang R, Zhang W, et al. Graphitic Carbon Nitride (G⁃C3n4)⁃Based Nanostructured Materials for Photodynamic Inactivation: Synthesis, Efficacy and Mechanism[J]. Chemical Engineering Journal,2021, 404:126528. |
| [28] | Basavarajappa P S, Patil S B, Ganganagappa N, et al. Recent Progress in Metal⁃Doped Tio2, Non⁃Metal Doped/Codoped Tio2 and Tio2 Nanostructured Hybrids for Enhanced Photocatalysis[J]. International Journal of Hydrogen Energy, 2020, 45 (13):7 764⁃7 778. |
| [29] | Ashfaq A, Ikram M, Haider A, et al. Nitrogen and Carbon Nitride⁃Doped Tio2 for Multiple Catalysis and Its Antimicrobial Activity[J]. Nanoscale Research Letters, 2021, 16 (1):1⁃15. |
| [30] | Baranowska⁃Wójcik E, Szwajgier D, Oleszczuk P, et al. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review[J]. Biological Trace Element Research, 2020, 193 (1):118⁃129. |
| [31] | Pawar S S, Baloji Naik R, Rath S K, et al. Photoinduced Hydrophilicity and Self⁃Cleaning Characteristics of Silicone⁃Modified Soya Alkyd/Tio2 Nanocomposite Coating[J]. Journal of Coatings Technology and Research, 2020, 17 (3): 719⁃730. |
| [32] | Ahmed O B, Alamro T. Evaluation of the Antibacterial Activities of Face Masks Coated with Titanium Dioxide Nanoparticles[J]. Scientific Reports, 2022, 12 (1):1⁃7. |
| [33] | Xiao L, Sun J, Liu L, et al. Enhanced Photothermal Bactericidal Activity of the Reduced Graphene Oxide Modified by Cationic Water⁃Soluble Conjugated Polymer[J]. ACS Applied Materials & Interfaces, 2017, 9 (6): 5 382⁃5 391. |
| [34] | Huang L, Xu S, Wang Z, et al. Self⁃Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser⁃Induced Graphene Mask[J]. ACS nano, 2020, 14 (9):12 045⁃12 053. |
| [35] | Bassan E, Gualandi A, Cozzi P G, et al. Design of Bodipy Dyes as Triplet Photosensitizers: Electronic Properties Tailored for Solar Energy Conversion, Photoredox Catalysis and Photodynamic Therapy[J]. Chemical Science, 2021, 12 (19):6 607⁃6 628. |
| [36] | Liu N, Sun G. Production of Reactive Oxygen Species by Photoactive Anthraquinone Compounds and Their Applications in Wastewater Treatment[J]. Industrial & Engineering Chemistry Research, 2011, 50 (9):5 326⁃5 333. |
| [37] | Tang P, Zhang Z, El⁃Moghazy A Y, et al. Daylight⁃Induced Antibacterial and Antiviral Cotton Cloth for Offensive Personal Protection[J]. ACS Applied Materials & Interfaces, 2020, 12 (44):49 442⁃49 451. |
| [38] | Zhu Q, Jin Y, Sun G, et al. Aqc Functionalized Cncs/Pva⁃Co⁃Pe Composite Nanofibrous Membrane with Flower⁃Like Microstructures for Photo⁃Induced Multi⁃Functional Protective Clothing[J]. Cellulose, 2018, 25 (8):4 819⁃4 830. |
| [39] | Hong K H, Sun G. Antimicrobial and Chemical Detoxifying Functions of Cotton Fabrics Containing Different Benzophenone Derivatives[J]. Carbohydrate Polymers, 2008, 71 (4):598⁃605. |
| [40] | Hou A, Feng G, Zhuo J, et al. Uv Light⁃Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3, 3′, 4, 4′⁃Benzophenone Tetracarboxylic Acid[J]. ACS Applied Materials & Interfaces, 2015, 7 (50):27 918⁃27 924. |
| [41] | DeRosa M C, Crutchley R J. Photosensitized Singlet Oxygen and Its Applications[J]. Coordination Chemistry Reviews, 2002, 233:351⁃371. |
| [42] | Scholte F E, Kabra K B, Tritsch S R, et al. Exploring Inactivation of Sars⁃Cov-2, Mers⁃Cov, Ebola, Lassa, and Nipah Viruses on N95 and Kn95 Respirator Material Using Photoactivated Methylene Blue to Enable Reuse[J]. American Journal of Infection Control, 2022, 50 (8):863⁃870. |
| [43] | Abrahamse H, Hamblin M R. New Photosensitizers for Photodynamic Therapy[J]. Biochemical Journal,2016, 473 (4):347⁃364. |
| [44] | Peddinti B S, Morales⁃Gagnon N, Pourdeyhimi B, et al. Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition[J]. ACS Applied Materials & Interfaces, 2020, 13 (1):155⁃163. |
| [45] | Wojcieszyńska D, Hupert⁃Kocurek K, Guzik U. Flavin⁃Dependent Enzymes in Cancer Prevention[J]. International Journal of Molecular Sciences, 2012, 13 (12):16 751⁃16 768. |
| [46] | Knak A, Regensburger J, Maisch T, et al. Exposure of Vitamins to Uvb and Uva Radiation Generates Singlet Oxygen[J]. Photochemical & Photobiological Sciences, 2014, 13(5):820⁃829. |
| [47] | Xu F, Li J, Zhu T.⁃t,et al. A New Trick (Hydroxyl Radical Generation) of an Old Vitamin (B2) for near⁃Infrared⁃Triggered Photodynamic Therapy[J]. RSC Advances, 2016, 6 (104):102 647⁃102 656. |
| [48] | Tang P, Ji B, Sun G. Stabilization of Flavin Mononucleotide by Capturing Its “Tail” with Porous Organic Polymers for Long⁃Term Photocatalytic Degradation of Micropollutants[J]. Journal of Hazardous Materials, 2022, 435:128982. |
| [49] | Kabra K B, Lendvay T S, Chen J,et al. Inactivation Strategies for Sars⁃Cov⁃2 on Surgical Masks Using Light⁃Activated Chemical Dyes[J]. American Journal of Infection Control, 2022, 50 (8):844⁃848. |
| [50] | Zhang Z, Chen X, Rao W, et al. Preparation of Novel Curcumin‐Imprinted Polymers Based on Magnetic Multi‐Walled Carbon Nanotubes for the Rapid Extraction of Curcumin from Ginger Powder and Kiwi Fruit Root[J]. Journal of Separation Science, 2015, 38 (1):108⁃114. |
| [51] | Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin[J]. Nutrients, 2020, 12 (9):2 499. |
| [52] | Condat M, Mazeran P E, Malval J P, et al. Photoinduced Curcumin Derivative⁃Coatings with Antibacterial Properties[J]. RSC Advances, 2015, 5 (104):85 214⁃85 224. |
| [53] | de Oliveira E F, Tosati J V, Tikekar R V, et al. Antimicrobial Activity of Curcumin in Combination with Light against Escherichia Coli O157: H7 and Listeria Innocua: Applications for Fresh Produce Sanitation[J]. Postharvest Biology and Technology, 2018, 137:86⁃94. |
| [54] | Gotardo F, Cocca L H, Acunha T V, et al. Investigating the Intersystem Crossing Rate and Triplet Quantum Yield of Protoporphyrin Ix by Means of Pulse Train Fluorescence Technique[J]. Chemical Physics Letters, 2017, 674:48⁃57. |
| [55] | Clement S, Deng W, Camilleri E, et al. X⁃Ray Induced Singlet Oxygen Generation by Nanoparticle⁃Photosensitizer Conjugates for Photodynamic Therapy: Determination of Singlet Oxygen Quantum Yield[J]. Scientific Reports, 2016, 6 (1):1⁃9. |
| [56] | Banerjee I, Douaisi M P, Mondal D, et al. Light⁃Activated Nanotube–Porphyrin Conjugates as Effective Antiviral Agents[J]. Nanotechnology,2012, 23 (10):105101. |
| [57] | Jia R, Tian W, Bai H, et al. Sunlight‐Driven Wearable and Robust Antibacterial Coatings with Water‐Soluble Cellulose‐Based Photosensitizers[J]. Advanced Healthcare Materials, 2019, 8 (5):1801591. |
| [1] | AN Lihong, TU Yi, ZHANG Guizhen. Preparation and properties of uniaxially stretched poly(ethylene⁃co⁃tetrafluoroethylene) films [J]. China Plastics, 2025, 39(11): 1-6. |
| [2] | HOU Qinzheng, LIU Wenlong, LI Changjin, QIN Liu, DING Yumei, LI Haoyi, YANG Weimin, HOU Zhengyuan. Preparation and properties of supercritical carbon dioxide⁃plasticized melt⁃blown polyethylene fiber film [J]. China Plastics, 2025, 39(10): 18-24. |
| [3] | LI Xinyu, LU Shulai, WANG Liwei, XU Chao, NIU Jingpeng, MA Xiaokun. Study on ABS specially used for modification of PC/ABS alloys [J]. China Plastics, 2025, 39(10): 33-38. |
| [4] | SUN Jingru, CHEN Yang, YANG Xiangchun, JI Hui, WANG Li, DOU Hongxing. Comparison of microporous membrane structure and properties between two PTFE resins with different molecular weights [J]. China Plastics, 2025, 39(10): 49-53. |
| [5] | LIU Zhongping, XIAO Yinhe, GE Huijun. Cracking analysis of PC component initiated by plasticized PVC [J]. China Plastics, 2025, 39(10): 54-59. |
| [6] | SU Yuhang, LU Xiuqiang, MAO Jianquan, YIN Wanglin, LIU Xiang, KE Junmu, LIN Yuanzhi. Preparation and characterizations of polypropylene/ethyl acrylate⁃modified chitinanaerobic biodegradable films [J]. China Plastics, 2025, 39(10): 60-68. |
| [7] | WANG Shuo, YUAN Wenbo, CHENG Yichong, ZANG Yuntao, LENG Dongliang, LI Haiyan, ZHAO Ling, HU Dongdong. Mechanical performance of branched polypropylene foams fabricated via supercritical CO₂ molding [J]. China Plastics, 2025, 39(9): 1-6. |
| [8] | YAN Lijun. Research progress and applications in steel⁃fiber⁃reinforced polyethylene composite pipe [J]. China Plastics, 2025, 39(9): 134-139. |
| [9] | REN Baixia, CHEN Xuelian, LI Yafei, ZHANG Wenxiu, GUO Chuangyue. Adhesion enhancement of PE/PE⁃g⁃MAH via crosslinking by peroxide [J]. China Plastics, 2025, 39(9): 44-48. |
| [10] | NIU Kai, ZHANG Run, LIU Mingfei, FU Chenchao, XUE Ping, WU Jiajun. Study on visco⁃elastic⁃plastic deformation of PE⁃UHMW under thermal⁃mechanical coupling [J]. China Plastics, 2025, 39(9): 7-11. |
| [11] | XU Feng, LI Yingjie, YANG Juyi, LI Xuan, CHU Chenglin. Aging behaviors of polyethylene gas pipeline under high temperature and external load [J]. China Plastics, 2025, 39(9): 75-80. |
| [12] | LI Wei, TANG Pengfei, PAN Dong, SHI Tuo, MO Shubei. Burst tests and pressure calculations for PVC⁃UH pipes with various diameters [J]. China Plastics, 2025, 39(9): 93-100. |
| [13] | Zhou Lei. Preparation of piperazine phosphate⁃melamine phosphate flame retardant and its flame⁃retardant effect on polypropylene [J]. China Plastics, 2025, 39(8): 94-99. |
| [14] | ZHANG Ning, LI Xianming, LI Gaihua, ZHANG Hongxia, YANG Xiaochun, YU Jing. Influence of surface⁃modified hydrotalcite with various coupling agents on the properties of PVC [J]. China Plastics, 2025, 39(8): 88-93. |
| [15] | MIN Jiaxuan, JIANG Xueliang, YOU Feng, LU Gang. Mechanical and thermal properties of PPC/PHBV blends [J]. China Plastics, 2025, 39(8): 6-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||