京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (9): 93-100.DOI: 10.19491/j.issn.1001-9278.2025.09.015
• Processing and Application • Previous Articles Next Articles
LI Wei1(
), TANG Pengfei2(
), PAN Dong3, SHI Tuo4, MO Shubei5
Received:2025-01-06
Online:2025-09-26
Published:2025-09-22
CLC Number:
LI Wei, TANG Pengfei, PAN Dong, SHI Tuo, MO Shubei. Burst tests and pressure calculations for PVC⁃UH pipes with various diameters[J]. China Plastics, 2025, 39(9): 93-100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2025.09.015
| 公式名称 | 表达式 | 备注 |
|---|---|---|
| Nadai | 基于管壁全截面屈服和Mises准则,主要用于厚壁圆筒。 | |
| 修正的Nadai | 考虑材料硬化特性。 | |
| Bailey⁃Nadai | - | |
| Marin⁃1 | 考虑材料和管径,主要针对薄壁圆筒, | |
| Marin⁃2 | 主要针对厚壁圆筒。 | |
| Marin⁃3 | 主要针对厚壁圆筒。 | |
| Marin⁃Rimrot | 考虑材料名义拉伸应力应变及外内径比, | |
| Soderberg | - | |
| Faupel | 考虑屈强比的半经验公式, | |
| Wellinger⁃Uebing | 根据材料真实拉伸强度和应变, | |
| Svensson | 根据材料硬化特性的半经验公式,e为自然常数。 | |
| Bohm | - | |
| API | 美国石油协会采用。 | |
| Turner | - | |
| Bailey | - | |
| ASME | 美国机械工程师学会采用。 | |
| Barlow⁃1 | ||
| Barlow⁃2 | - | |
| Barlow⁃3 | ||
| DNV⁃1 | 挪威船级社采用。 | |
| DNV⁃2 | ||
| Fletcher | - | |
| 最大应力准则 | ||
| 最大剪应力准则 |
| 公式名称 | 表达式 | 备注 |
|---|---|---|
| Nadai | 基于管壁全截面屈服和Mises准则,主要用于厚壁圆筒。 | |
| 修正的Nadai | 考虑材料硬化特性。 | |
| Bailey⁃Nadai | - | |
| Marin⁃1 | 考虑材料和管径,主要针对薄壁圆筒, | |
| Marin⁃2 | 主要针对厚壁圆筒。 | |
| Marin⁃3 | 主要针对厚壁圆筒。 | |
| Marin⁃Rimrot | 考虑材料名义拉伸应力应变及外内径比, | |
| Soderberg | - | |
| Faupel | 考虑屈强比的半经验公式, | |
| Wellinger⁃Uebing | 根据材料真实拉伸强度和应变, | |
| Svensson | 根据材料硬化特性的半经验公式,e为自然常数。 | |
| Bohm | - | |
| API | 美国石油协会采用。 | |
| Turner | - | |
| Bailey | - | |
| ASME | 美国机械工程师学会采用。 | |
| Barlow⁃1 | ||
| Barlow⁃2 | - | |
| Barlow⁃3 | ||
| DNV⁃1 | 挪威船级社采用。 | |
| DNV⁃2 | ||
| Fletcher | - | |
| 最大应力准则 | ||
| 最大剪应力准则 |
| 编号 | 试件型号 | 试件1 | 试件2 | 试件3 | 试件4 | 平均值 |
|---|---|---|---|---|---|---|
| 1 | dn110t4.3 | 3.96 | 4.06 | 3.84 | 4.20 | 4.02 |
| 2 | dn160t6.2 | 4.07 | 3.72 | 4.63 | - | 4.14 |
| 3 | dn200t8.2 | 3.90 | 4.14 | 4.33 | 4.25 | 4.16 |
| 4 | Dn630t24 | 3.85 | 4.23 | - | - | 4.04 |
| 编号 | 试件型号 | 试件1 | 试件2 | 试件3 | 试件4 | 平均值 |
|---|---|---|---|---|---|---|
| 1 | dn110t4.3 | 3.96 | 4.06 | 3.84 | 4.20 | 4.02 |
| 2 | dn160t6.2 | 4.07 | 3.72 | 4.63 | - | 4.14 |
| 3 | dn200t8.2 | 3.90 | 4.14 | 4.33 | 4.25 | 4.16 |
| 4 | Dn630t24 | 3.85 | 4.23 | - | - | 4.04 |
| 计算方式 | DN110t4.3 | DN160t6.2 | DN200t8.2 | Me/% | |||
|---|---|---|---|---|---|---|---|
| P/MPa | 误差/% | P/MPa | 误差/% | P/MPa | 误差/% | ||
| 试验值 | 4.02 | - | 4.14 | - | 4.16 | - | - |
| TSSY | 3.92 | -2.5 | 3.89 | -6.0 | 4.13 | -0.7 | 3.1 |
| Tresca | 2.29 | -43.0 | 2.27 | -45.2 | 2.41 | -42.1 | 43.4 |
| Von Mises | 3.00 | -25.4 | 2.97 | -28.3 | 3.15 | -24.3 | 26.0 |
| ASSY | 2.64 | -34.3 | 2.61 | -37.0 | 2.78 | -33.2 | 34.8 |
| Nadai | 4.55 | 13.2 | 4.55 | 9.9 | 5.08 | 22.1 | 15.1 |
| 修正Nadai | 3.95 | -1.7 | 3.95 | -4.6 | 4.40 | 5.8 | 4.0 |
| Bailey⁃Nadai | 3.69 | -8.2 | 3.69 | -10.9 | 4.11 | -1.2 | 6.8 |
| Marin⁃1 | 3.12 | -22.4 | 3.09 | -25.4 | 3.29 | -20.9 | 22.9 |
| Marin⁃2 | 2.45 | -39.1 | 2.45 | -40.8 | 2.73 | -34.4 | 38.1 |
| Marin⁃3 | 3.12 | -22.4 | 3.09 | -25.4 | 3.29 | -20.9 | 22.9 |
| Marin⁃Rimrot | 1.98 | -50.7 | 1.98 | -52.2 | 2.21 | -46.9 | 49.9 |
| Soderberg | 4.49 | 11.7 | 4.49 | 8.5 | 5.08 | 22.1 | 14.1 |
| Faupel | 6.02 | 49.8 | 6.02 | 45.4 | 6.72 | 61.5 | 52.2 |
| Wellinger⁃Uebing | 4.12 | 2.5 | 4.12 | -0.5 | 4.60 | 10.6 | 4.5 |
| Svensson | 2.44 | -39.3 | 2.44 | -41.1 | 2.72 | -34.6 | 38.3 |
| Bohm | 2.49 | -38.1 | 2.49 | -39.9 | 2.66 | -36.1 | 38.0 |
| API | 2.47 | -38.6 | 2.44 | -41.1 | 2.59 | -37.7 | 39.1 |
| Turner | 3.94 | -2.0 | 3.94 | -4.8 | 4.40 | 5.8 | 4.2 |
| Bailey | 3.69 | -8.2 | 3.69 | -10.9 | 4.11 | -1.2 | 6.8 |
| ASME | 3.91 | -2.7 | 3.91 | -5.6 | 4.37 | 5.1 | 4.5 |
| Barlow⁃1 | 4.00 | -0.5 | 3.97 | -4.1 | 4.20 | -1.0 | 1.9 |
| Barlow⁃2 | 4.34 | 8.0 | 4.30 | 3.9 | 4.57 | 9.9 | 7.3 |
| Barlow⁃3 | 3.64 | -9.5 | 3.60 | -13.0 | 3.83 | -7.9 | 10.1 |
| DNV⁃1 | 3.49 | -13.2 | 3.46 | -16.4 | 3.67 | -11.8 | 13.8 |
| DNV⁃2 | 4.36 | 8.5 | 4.32 | 4.3 | 4.50 | 8.2 | 7.0 |
| Fletcher | 6.38 | 58.7 | 6.32 | 52.7 | 6.72 | 61.5 | 57.6 |
| 最大应力准则 | 4.25 | 5.7 | 4.25 | 2.7 | 4.79 | 15.1 | 7.8 |
| 最大剪应力准则 | 4.04 | 0.5 | 4.04 | -2.4 | 4.57 | 9.9 | 4.3 |
| Margetson | 4.70 | 16.9 | 4.66 | 12.6 | 4.95 | 19.0 | 16.2 |
| Klever⁃Stewart | 2.64 | -34.3 | 2.62 | -36.7 | 2.78 | -33.2 | 34.7 |
| Zhu⁃Leis | 4.08 | 1.5 | 4.04 | -2.4 | 4.29 | 3.1 | 2.3 |
| 计算方式 | DN110t4.3 | DN160t6.2 | DN200t8.2 | Me/% | |||
|---|---|---|---|---|---|---|---|
| P/MPa | 误差/% | P/MPa | 误差/% | P/MPa | 误差/% | ||
| 试验值 | 4.02 | - | 4.14 | - | 4.16 | - | - |
| TSSY | 3.92 | -2.5 | 3.89 | -6.0 | 4.13 | -0.7 | 3.1 |
| Tresca | 2.29 | -43.0 | 2.27 | -45.2 | 2.41 | -42.1 | 43.4 |
| Von Mises | 3.00 | -25.4 | 2.97 | -28.3 | 3.15 | -24.3 | 26.0 |
| ASSY | 2.64 | -34.3 | 2.61 | -37.0 | 2.78 | -33.2 | 34.8 |
| Nadai | 4.55 | 13.2 | 4.55 | 9.9 | 5.08 | 22.1 | 15.1 |
| 修正Nadai | 3.95 | -1.7 | 3.95 | -4.6 | 4.40 | 5.8 | 4.0 |
| Bailey⁃Nadai | 3.69 | -8.2 | 3.69 | -10.9 | 4.11 | -1.2 | 6.8 |
| Marin⁃1 | 3.12 | -22.4 | 3.09 | -25.4 | 3.29 | -20.9 | 22.9 |
| Marin⁃2 | 2.45 | -39.1 | 2.45 | -40.8 | 2.73 | -34.4 | 38.1 |
| Marin⁃3 | 3.12 | -22.4 | 3.09 | -25.4 | 3.29 | -20.9 | 22.9 |
| Marin⁃Rimrot | 1.98 | -50.7 | 1.98 | -52.2 | 2.21 | -46.9 | 49.9 |
| Soderberg | 4.49 | 11.7 | 4.49 | 8.5 | 5.08 | 22.1 | 14.1 |
| Faupel | 6.02 | 49.8 | 6.02 | 45.4 | 6.72 | 61.5 | 52.2 |
| Wellinger⁃Uebing | 4.12 | 2.5 | 4.12 | -0.5 | 4.60 | 10.6 | 4.5 |
| Svensson | 2.44 | -39.3 | 2.44 | -41.1 | 2.72 | -34.6 | 38.3 |
| Bohm | 2.49 | -38.1 | 2.49 | -39.9 | 2.66 | -36.1 | 38.0 |
| API | 2.47 | -38.6 | 2.44 | -41.1 | 2.59 | -37.7 | 39.1 |
| Turner | 3.94 | -2.0 | 3.94 | -4.8 | 4.40 | 5.8 | 4.2 |
| Bailey | 3.69 | -8.2 | 3.69 | -10.9 | 4.11 | -1.2 | 6.8 |
| ASME | 3.91 | -2.7 | 3.91 | -5.6 | 4.37 | 5.1 | 4.5 |
| Barlow⁃1 | 4.00 | -0.5 | 3.97 | -4.1 | 4.20 | -1.0 | 1.9 |
| Barlow⁃2 | 4.34 | 8.0 | 4.30 | 3.9 | 4.57 | 9.9 | 7.3 |
| Barlow⁃3 | 3.64 | -9.5 | 3.60 | -13.0 | 3.83 | -7.9 | 10.1 |
| DNV⁃1 | 3.49 | -13.2 | 3.46 | -16.4 | 3.67 | -11.8 | 13.8 |
| DNV⁃2 | 4.36 | 8.5 | 4.32 | 4.3 | 4.50 | 8.2 | 7.0 |
| Fletcher | 6.38 | 58.7 | 6.32 | 52.7 | 6.72 | 61.5 | 57.6 |
| 最大应力准则 | 4.25 | 5.7 | 4.25 | 2.7 | 4.79 | 15.1 | 7.8 |
| 最大剪应力准则 | 4.04 | 0.5 | 4.04 | -2.4 | 4.57 | 9.9 | 4.3 |
| Margetson | 4.70 | 16.9 | 4.66 | 12.6 | 4.95 | 19.0 | 16.2 |
| Klever⁃Stewart | 2.64 | -34.3 | 2.62 | -36.7 | 2.78 | -33.2 | 34.7 |
| Zhu⁃Leis | 4.08 | 1.5 | 4.04 | -2.4 | 4.29 | 3.1 | 2.3 |
| 计算方式 | DN110t4.3 | DN160t6.2 | DN200t8.2 | Me/% | |||
|---|---|---|---|---|---|---|---|
| P/MPa | 误差/% | P/MPa | 误差/% | P/MPa | 误差/% | ||
| 试验值 | 4.02 | - | 4.14 | - | 4.16 | - | - |
| TSSY | 6.58 | 63.7 | 6.66 | 60.9 | 7.08 | 70.2 | 64.9 |
| Tresca | 3.84 | -4.5 | 3.89 | -6.0 | 4.136 | -0.6 | 3.7 |
| Von Mises | 5.03 | 25.1 | 5.10 | 23.2 | 5.41 | 30.0 | 26.1 |
| ASSY | 4.43 | 10.2 | 4.49 | 8.5 | 4.77 | 14.7 | 11.1 |
| Nadai | 7.82 | 94.5 | 7.82 | 88.9 | 8.74 | 110.1 | 97.8 |
| 修正Nadai | 6.80 | 69.2 | 6.80 | 64.3 | 7.56 | 81.7 | 71.7 |
| Bailey⁃Nadai | 6.34 | 57.7 | 6.34 | 53.1 | 7.06 | 69.7 | 60.2 |
| Marin⁃1 | 5.24 | 30.3 | 5.32 | 28.5 | 5.66 | 36.1 | 31.6 |
| Marin⁃2 | 4.21 | 4.7 | 4.21 | 1.7 | 4.70 | 13.0 | 6.5 |
| Marin⁃3 | 5.24 | 30.3 | 5.32 | 28.5 | 5.66 | 36.1 | 31.6 |
| Marin⁃Rimrot | 3.40 | -15.4 | 3.40 | -17.9 | 3.79 | -8.9 | 14.1 |
| Soderberg | 7.72 | 92.0 | 7.72 | 86.5 | 8.74 | 110.1 | 96.2 |
| Faupel | 6.60 | 64.2 | 6.60 | 59.4 | 7.37 | 77.2 | 66.9 |
| Wellinger⁃Uebing | 2.43 | -39.6 | 2.43 | -41.3 | 2.72 | -34.6 | 38.5 |
| Svensson | 4.19 | 4.2 | 4.19 | 1.2 | 4.68 | 12.5 | 6.0 |
| Bohm | 4.29 | 6.7 | 4.29 | 3.6 | 4.58 | 10.1 | 6.8 |
| API | 3.77 | -6.2 | 3.74 | -9.7 | 3.97 | -4.6 | 6.8 |
| Turner | 6.78 | 68.7 | 6.78 | 63.8 | 7.57 | 82.0 | 71.5 |
| Bailey | 6.34 | 57.7 | 6.34 | 53.1 | 7.06 | 69.7 | 60.2 |
| ASME | 6.72 | 67.2 | 6.72 | 62.3 | 7.51 | 80.5 | 70.0 |
| Barlow⁃1 | 6.88 | 71.1 | 6.82 | 64.7 | 7.22 | 73.6 | 69.8 |
| Barlow⁃2 | 7.46 | 85.6 | 7.39 | 78.5 | 7.86 | 88.9 | 84.3 |
| Barlow⁃3 | 5.98 | 48.8 | 5.92 | 43.0 | 6.30 | 51.4 | 47.7 |
| DNV⁃1 | 5.74 | 42.8 | 5.68 | 37.2 | 6.03 | 45.0 | 41.7 |
| DNV⁃2 | 7.50 | 86.6 | 7.43 | 79.5 | 7.90 | 89.9 | 85.3 |
| Fletcher | 10.49 | 160.9 | 9.73 | 135.0 | 10.99 | 164.2 | 153.4 |
| 最大应力准则 | 7.04 | 75.1 | 7.04 | 70.0 | 7.92 | 90.4 | 78.5 |
| 最大剪应力准则 | 6.69 | 66.4 | 6.69 | 61.6 | 7.57 | 82.0 | 70.0 |
| Margetson | 1.95 | -51.5 | 1.81 | -56.3 | 2.06 | -50.5 | 52.8 |
| Klever⁃Stewart | 4.55 | 13.2 | 4.51 | 8.9 | 4.78 | 14.9 | 12.3 |
| Zhu⁃Leis | 6.87 | 70.9 | 6.81 | 64.5 | 7.22 | 73.6 | 69.7 |
| 计算方式 | DN110t4.3 | DN160t6.2 | DN200t8.2 | Me/% | |||
|---|---|---|---|---|---|---|---|
| P/MPa | 误差/% | P/MPa | 误差/% | P/MPa | 误差/% | ||
| 试验值 | 4.02 | - | 4.14 | - | 4.16 | - | - |
| TSSY | 6.58 | 63.7 | 6.66 | 60.9 | 7.08 | 70.2 | 64.9 |
| Tresca | 3.84 | -4.5 | 3.89 | -6.0 | 4.136 | -0.6 | 3.7 |
| Von Mises | 5.03 | 25.1 | 5.10 | 23.2 | 5.41 | 30.0 | 26.1 |
| ASSY | 4.43 | 10.2 | 4.49 | 8.5 | 4.77 | 14.7 | 11.1 |
| Nadai | 7.82 | 94.5 | 7.82 | 88.9 | 8.74 | 110.1 | 97.8 |
| 修正Nadai | 6.80 | 69.2 | 6.80 | 64.3 | 7.56 | 81.7 | 71.7 |
| Bailey⁃Nadai | 6.34 | 57.7 | 6.34 | 53.1 | 7.06 | 69.7 | 60.2 |
| Marin⁃1 | 5.24 | 30.3 | 5.32 | 28.5 | 5.66 | 36.1 | 31.6 |
| Marin⁃2 | 4.21 | 4.7 | 4.21 | 1.7 | 4.70 | 13.0 | 6.5 |
| Marin⁃3 | 5.24 | 30.3 | 5.32 | 28.5 | 5.66 | 36.1 | 31.6 |
| Marin⁃Rimrot | 3.40 | -15.4 | 3.40 | -17.9 | 3.79 | -8.9 | 14.1 |
| Soderberg | 7.72 | 92.0 | 7.72 | 86.5 | 8.74 | 110.1 | 96.2 |
| Faupel | 6.60 | 64.2 | 6.60 | 59.4 | 7.37 | 77.2 | 66.9 |
| Wellinger⁃Uebing | 2.43 | -39.6 | 2.43 | -41.3 | 2.72 | -34.6 | 38.5 |
| Svensson | 4.19 | 4.2 | 4.19 | 1.2 | 4.68 | 12.5 | 6.0 |
| Bohm | 4.29 | 6.7 | 4.29 | 3.6 | 4.58 | 10.1 | 6.8 |
| API | 3.77 | -6.2 | 3.74 | -9.7 | 3.97 | -4.6 | 6.8 |
| Turner | 6.78 | 68.7 | 6.78 | 63.8 | 7.57 | 82.0 | 71.5 |
| Bailey | 6.34 | 57.7 | 6.34 | 53.1 | 7.06 | 69.7 | 60.2 |
| ASME | 6.72 | 67.2 | 6.72 | 62.3 | 7.51 | 80.5 | 70.0 |
| Barlow⁃1 | 6.88 | 71.1 | 6.82 | 64.7 | 7.22 | 73.6 | 69.8 |
| Barlow⁃2 | 7.46 | 85.6 | 7.39 | 78.5 | 7.86 | 88.9 | 84.3 |
| Barlow⁃3 | 5.98 | 48.8 | 5.92 | 43.0 | 6.30 | 51.4 | 47.7 |
| DNV⁃1 | 5.74 | 42.8 | 5.68 | 37.2 | 6.03 | 45.0 | 41.7 |
| DNV⁃2 | 7.50 | 86.6 | 7.43 | 79.5 | 7.90 | 89.9 | 85.3 |
| Fletcher | 10.49 | 160.9 | 9.73 | 135.0 | 10.99 | 164.2 | 153.4 |
| 最大应力准则 | 7.04 | 75.1 | 7.04 | 70.0 | 7.92 | 90.4 | 78.5 |
| 最大剪应力准则 | 6.69 | 66.4 | 6.69 | 61.6 | 7.57 | 82.0 | 70.0 |
| Margetson | 1.95 | -51.5 | 1.81 | -56.3 | 2.06 | -50.5 | 52.8 |
| Klever⁃Stewart | 4.55 | 13.2 | 4.51 | 8.9 | 4.78 | 14.9 | 12.3 |
| Zhu⁃Leis | 6.87 | 70.9 | 6.81 | 64.5 | 7.22 | 73.6 | 69.7 |
| 编号 | 实测平均值/MPa | 两倍弹性斜率准则 | 双切线准则 | 零曲率准则 | 两倍弹性变形准则 | 0.2 %残余应变准则 | 0.4 %残余应变准则 |
|---|---|---|---|---|---|---|---|
| 1 | 4.02 | 4.47 | 4.38 | 4.48 | 4.13 | 3.72 | 4.05 |
| 2 | 4.14 | 4.43 | 4.25 | 4.45 | 4.07 | 3.70 | 4.02 |
| 3 | 4.16 | 4.70 | 4.73 | 4.47 | 4.34 | 3.96 | 4.29 |
| Me/% | - | 10.4 | 8.4 | 8.8 | 2.9 | 7.6 | 2.3 |
| 编号 | 实测平均值/MPa | 两倍弹性斜率准则 | 双切线准则 | 零曲率准则 | 两倍弹性变形准则 | 0.2 %残余应变准则 | 0.4 %残余应变准则 |
|---|---|---|---|---|---|---|---|
| 1 | 4.02 | 4.47 | 4.38 | 4.48 | 4.13 | 3.72 | 4.05 |
| 2 | 4.14 | 4.43 | 4.25 | 4.45 | 4.07 | 3.70 | 4.02 |
| 3 | 4.16 | 4.70 | 4.73 | 4.47 | 4.34 | 3.96 | 4.29 |
| Me/% | - | 10.4 | 8.4 | 8.8 | 2.9 | 7.6 | 2.3 |
| [1] | Tang Pengfei, Hu Shaowei, Lu Changheng, et al. Burst failure analysis of PVC⁃UH pipes with axial surface crack based on multiple methodologies[J]. Engineering Failure Analysis, 2024,166: 108841. |
| [2] | Yang Jinhui, Hu Shaowei. Estimation of burst pressure of PVC pipe using average shear stress yield criterion: experimental and numerical studies[J]. Applied Sciences, 2021,11: 10477. |
| [3] | 中华人民共和国住房和城乡建设部. 给水用高性能硬聚氯乙烯管材及连接件 [S]. 北京: 中国标准出版社, 2016. |
| [4] | 胡群芳, 苏航剑, 方宏远, 等. 供水管网大口径管道爆管事件形成机理与精细模拟[J]. 同济大学学报(自然科学版), 2023,51(2): 153⁃160. |
| HU Q F, SU H J, FANG H Y, et al. Dynamic simulation and mechanical analysis of large⁃diameter water main burst[J]. Journal of Tongji University (Natural Science), 2023,51(2): 153⁃160. | |
| [5] | Zhu Xiankui. Exact solution of burst pressure for thick⁃walled pipes using the flow theory of plastic[J]. International Journal of Mechanical Sciences, 2023,259: 108582. |
| [6] | Jun Tang Ze, Hu Zhang Shun, Yan Li, et al. A mathematical extrapolation⁃based yield criterion and its application in modeling of burst pressure of defect⁃free straight pipes[J]. Occean Engineering, 2022,263:112408. |
| [7] | Tang Pengfei, Lu Changheng, Hu Shaowei, et al. Mechanical response and failure prediction of cracked PVC⁃UH buried thin⁃walled pipes[J]. Case studies in Construction Materials, 2025,22: e04438. |
| [8] | 潘兴隆, 张 攀, 张鲁君, 等. 含沟槽缺陷铜镍合金管爆裂压力计算[J]. 哈尔滨工业大学学报, 2022,54(1):132⁃139. |
| PAN X L, ZHANG P, ZHANG L J, et al. Burst pressure calculation of Cu⁃Ni alloy pipeline with groove defect[J]. Journal of Harbin Institute of Technology, 2022,54(1): 132⁃139. | |
| [9] | 祝晓海. 薄壁无缺陷管道爆破压力的研究[D]. 杭州: 浙江大学, 2011. |
| [10] | Zeng Dezhi, Xi Wang, Ming Kunji, et al. Analysis and optimization design of internal pressure resistance of flexible composite pipe[J]. International Journal of Pressure Vessels and Piping, 2024,210: 105271. |
| [11] | Francisca Carvalho Alves A, Ferreira Bernardo P, Andrade Pires F M. A constitutive model for amorphous thermoplastics from low to high strain rates: Formulation and computational aspects[J]. International Journal of Plasticity, 2023,169: 103712. |
| [12] | Fatima Majid, Mohamed Safe, Mohamed Elghorba. Burst behavior of CPVC compared to HDPE thermoplastic polymer under a controlled internal pressure[C]. Procedia Structural Integrity, 2017, 3:380⁃386. |
| [13] | ASTM Committee F17 on Plastic Piping Systems. Standard Test Method for Resistance to Short⁃Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings[S]. Pennsylvania, United States: ASTM Committee F17 on Plastic Piping Systems, 2018. |
| [14] | Chen Zhangfeng, Zhu Weiping, Di Qinfeng, et al. Prediction of burst pressure of pipes with geometric eccentricity[J]. Journal of Pressure Vessel Technology, 2015,137:061201. |
| [1] | YAN Lijun. Research progress and applications in steel⁃fiber⁃reinforced polyethylene composite pipe [J]. China Plastics, 2025, 39(9): 134-139. |
| [2] | XU Feng, LI Yingjie, YANG Juyi, LI Xuan, CHU Chenglin. Aging behaviors of polyethylene gas pipeline under high temperature and external load [J]. China Plastics, 2025, 39(9): 75-80. |
| [3] | HU Lizhou, SUN Yinghui, JIA Yingjie, WANG Qingzhou. Interlaminar interface damage and mechanical properties of glass fiber⁃reinforced plastic mortar pipe [J]. China Plastics, 2025, 39(8): 69-74. |
| [4] | ZHANG Ning, LI Xianming, LI Gaihua, ZHANG Hongxia, YANG Xiaochun, YU Jing. Influence of surface⁃modified hydrotalcite with various coupling agents on the properties of PVC [J]. China Plastics, 2025, 39(8): 88-93. |
| [5] | Zhou Lei. Preparation of piperazine phosphate⁃melamine phosphate flame retardant and its flame⁃retardant effect on polypropylene [J]. China Plastics, 2025, 39(8): 94-99. |
| [6] | WANG Wenhao, QIU Siyuan, LI Yajiao, SUN Jingyao, WU Daming, WANG Shuyuan, XU Hong, GAI Yunqing. Analysis of mechanical properties of RTP pipe based on progressive failure model [J]. China Plastics, 2025, 39(7): 44-48. |
| [7] | HU Yanlei, SUN Jin, HU Fa, WU Zhijun, LI Yue, WU Xiaohan. Study on fatigue failure resistance of polyethylene pipe materials evaluated by cyclic loading method [J]. China Plastics, 2025, 39(7): 49-55. |
| [8] | NIU Zhong, WU Zunhong. Research on modification of PVC flooring surface material for badminton courts [J]. China Plastics, 2025, 39(6): 66-72. |
| [9] | TANG Wenliang, YAN Jizhong, SHEN Limin, YANG Hong, WU Shengping, WANG GuoXing. Numerical simulation of PE pipeline damages with synergistic effect of multiple factors [J]. China Plastics, 2025, 39(5): 63-69. |
| [10] | ZHANG Hui, TANG Zhanzhan, BAO Haixia, CHENG Xinyuan, CHEN Bin. Study on degradation of mechanical performance of unplasticized poly(vinyl chloride) pipes at different ambient temperature [J]. China Plastics, 2025, 39(2): 26-31. |
| [11] | WANG Chen, HE Qi, LI Jingyao. Application of fused deposition modeling 3D printing in copying shape checker of automotive air conditioning connecting pipe [J]. China Plastics, 2025, 39(2): 40-44. |
| [12] | XU Lu, LIU Jian, WANG Zhenchao, ZHANG Shijun, QIE Jichun, YOU Qijiang, CAI zhihui. Study on welding of electrofusion fittings for high⁃density polyethylene natural gas pipeline [J]. China Plastics, 2025, 39(2): 60-66. |
| [13] | YANG Xiaochun, LIU Huiyuan, ZHANG Qing, YU Jing. Effect of sodium⁃A molecular sieve on heat stability of PVC [J]. China Plastics, 2025, 39(2): 77-81. |
| [14] | SHI Xunruo. The current situation and prospect of poly(vinyl chloride) building materials [J]. China Plastics, 2024, 38(9): 145-153. |
| [15] | WU Weihong, ZHANG Jing, ZHANG Ge, GENG Rongrong, QU Hongqiang. Preparation of piperazine pyrophosphate @COF flame retardant and its flame retardant effect on epoxy resin [J]. China Plastics, 2024, 38(8): 88-93. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||