
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2020, Vol. 34 ›› Issue (12): 92-102.DOI: 10.19491/j.issn.1001-9278.2020.12.016
李晨洋1,2, 公维光3, 孟鑫1,2(), 曹齐茗1,2, 姚中阳1,2
收稿日期:
2020-05-08
出版日期:
2020-12-26
发布日期:
2020-12-26
LI Chenyang1,2,GONG Weiguang3,MENG Xin1,2(),CAO Qiming1,2, YAO Zhongyang1,2
Received:
2020-05-08
Online:
2020-12-26
Published:
2020-12-26
Contact:
MENG Xin
E-mail:mengxin@ecust.edu.cn
摘要:
抗氧剂对抑制聚烯烃材料的氧化具有重要作用,但其在制品中易迁移、易挥发,降低了抗氧化效率。综述了近年来通过抗氧剂大分子化、聚合物封装和无机载体固载,实现抗氧剂耐迁移化的研究进展。其次,提出了目前抗氧剂耐迁移化技术存在的问题及改进方法,并对其发展前景做出展望。
中图分类号:
李晨洋, 公维光, 孟鑫, 曹齐茗, 姚中阳. 抗氧剂耐迁移化技术的研究应用进展[J]. 中国塑料, 2020, 34(12): 92-102.
LI Chenyang, GONG Weiguang, MENG Xin, CAO Qiming, YAO Zhongyang. Research and Application Progress of Antioxidant Anti⁃migration Technology[J]. China Plastics, 2020, 34(12): 92-102.
1 | 姜日元, 齐姝婧, 卢春阳, 等. 国内外聚乙烯生产及供需情况分析预测[M]. 化学工业, 2019, 37: 26⁃32,41. |
2 | 谭 捷. 我国聚丙烯供需现状及未来发展分析[J]. 塑料助剂, 2019(4):5⁃12,18. |
TAN J. Supply⁃Demand Status and Future Development Analysis of Polypropylene in China[J]. Plastics Additives, 2019(4):5⁃12,18. | |
3 | 冯亚青, 陈立功. 助剂化学及工艺学[M].第二版. 北京: 化学工业出版社, 2015: 49⁃52. |
4 | LI G Y, KOENIG J L. A Review of Rubber Oxidation[J]. Rubber Chemistry and Technology, 2005, 78(2):355⁃390. |
5 | FISCHER J, METZSCH⁃ZILLIGEN E, ZOU M Y, et al. A Novel Class of High Molecular Weight Multifunctional Antioxidants for Polymers Based on Thiol⁃Ene Click Reaction[J]. Polymer Degradation and Stability, 2020, 173:109099. |
6 | MENG X, JIANG Z W, XIN Z, et al. Antioxidation and Mechanism of Phosphites Including the Free Phenolic Hydroxyl Group in Polypropylene[J]. Journal of Applied Polymer Science, 2017, 134(15):44696. |
7 | 孟 鑫, 蒋泽文, 公维光. 亚磷酸酯⁃酚双功能抗氧剂对聚丙烯氧化稳定性的影响[J]. 塑料助剂, 2019(1):28⁃33. |
MENG X, JIANG Z W, GONG W G. Impact of the Phosphite⁃Phenol Bifunctional Antioxidant on the Oxidative Stability of Polypropylene[J]. Plastics Additives, 2019(1):28⁃33. | |
8 | MANTEGHI A, AHMADI S, ARABI H. Covalent Immobilization of Phenolic Antioxidant on Ethylene Copolymers: An Efficient Approach Toward Enhanced Long⁃term Stabilization of Polypropylene[J]. Polymer, 2016, 104:31⁃39. |
9 | MANTEGHI A, AHMADI S, ARABI H. Enhanced Thermo⁃oxidative Stability through Covalent Attachment of Hindered Phenolic Antioxidant on Surface Functionalized Polypropylene[J]. Polymer, 2018, 138:41⁃48. |
10 | XUE B Y, OGATA K, TOYOTA A. Synthesis of Polymeric Antioxidants Based on Ring⁃Opening Metathesis Polymerization (ROMP) and Their Antioxidant Ability for Preventing Polypropylene (PP) from Thermal Oxidation Degradation[J]. Polymer Degradation and Stability, 2008, 93(2):347⁃352. |
11 | MAQSOUDLOU A, ASSADPOUR E, MOHEBODINI H, et al. Improving the Efficiency of Natural Antioxidant Compounds via Different Nanocarriers[J]. Advances in Colloid and Interface Science, 2020, 278:102122. |
12 | DALMOLIN L F, KHALIL N M, MAINARDES R M. Delivery of Vanillin by Poly(lactic⁃acid) Nanoparticles: Development, Characterization and in Vitro Evaluation of Antioxidant Activity[J]. Materials Science and Engineering: C, 2016, 62:1⁃8. |
13 | MARCET I, WENG S H, SÁEZ⁃ORVIZ S, et al. Production and Characterisation of Biodegradable PLA Nanoparticles Loaded with Thymol to Improve Its Antimicrobial Effect[J]. Journal of Food Engineering, 2018, 239:26⁃32. |
14 | GIMENEZ⁃ROTA C, PALAZZO I, SCOGNAMIGLIO M R, et al. Β⁃Carotene, Α⁃Tocoferol and Rosmarinic Acid Encapsulated within PLA/PLGA Microcarriers by Supercritical Emulsion Extraction: Encapsulation Efficiency, Drugs Shelf⁃life and Antioxidant Activity[J]. The Journal of Supercritical Fluids, 2019, 146:199⁃207. |
15 | BRUNI G P, OLIVEIRA J P D, GÓMEZ⁃MASCARAQUE L G, et al. Electrospun Β⁃carotene⁃loaded SPI: PVA Fiber Mats Produced by Emulsion⁃electrospinning as Bioactive Coatings for Food Packaging[J]. Food Packaging and Shelf Life, 2020, 23:100426. |
16 | LI G, WANG F, LIU P, et al. Antioxidant Functionalized Silica⁃coated TiO2 Nanorods to Enhance the Thermal and Photo Stability of Polypropylene[J]. Applied Surface Science, 2019, 476:682⁃690. |
17 | ZHONG B C, SHI Q F, JIA Z X, et al. Preparation of Silica⁃supported 2⁃mercaptobenzimidazole and Its Antioxidative Behavior in Styrene⁃butadiene Rubber[J]. Polymer Degradation and Stability, 2014, 110:260⁃267. |
18 | LIN J, LUO Y F, ZHONG B C, et al. Enhanced Interfacial Interaction and Antioxidative Behavior of Novel Halloysite Nanotubes/Silica Hybrid Supported Antioxidant in Styrene⁃butadiene Rubber[J]. Applied Surface Science, 2018, 441:798⁃806. |
19 | SHI X M, WANG J D, JIANG B B, et al. Hindered Phenol Grafted Carbon Nanotubes for Enhanced Thermal Oxidative Stability of Polyethylene[J]. Polymer, 2013, 54(3):1 167⁃1 176. |
20 | ZHANG J H, ZHANG H, CHEN F B, et al. Improving Stability of Mechanical Properties for Nitrile Butadiene Rubber Composite by Carbon Nanotube with Antioxidant Loading Distribution[J]. Polymer Composites, 2019, 40(S2):E1172⁃E1180. |
21 | ZHANG J H, ZHANG H, WANG S T, et al. Antioxidant⁃loaded Carbon Nanotube to Sustain a Long⁃term Aging⁃protection for Acrylonitrile⁃butadiene Rubber[J]. Polymer Degradation and Stability, 2017, 144:93⁃99. |
22 | TANG H Y, LIU P, LU M, et al. Thermal⁃oxidative Effect of a Co⁃condensed Nanosilica⁃based Antioxidant in Polypropylene[J]. Polymer, 2017, 112:369⁃376. |
23 | FU Y, ZHAO D T, YAO P J, et al. Highly Aging⁃resistant Elastomers Doped with Antioxidant⁃loaded Clay Nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15):8 156⁃8 165. |
24 | FU Y, YANG C, LVOV Y M, et al. Antioxidant Sustained Release from Carbon Nanotubes for Preparation of Highly Aging Resistant Rubber[J]. Chemical Engineering Journal, 2017, 328:536⁃545. |
25 | ZHONG B C, LIN J, LIU M L, et al. Preparation of Halloysite Nanotubes Loaded Antioxidant and Its Antioxidative Behaviour in Natural Rubber[J]. Polymer Degradation and Stability, 2017, 141:19⁃25. |
26 | BERLIER G, GASTALDI L, SAPINO S, et al. MCM⁃41 as a Useful Vector for Rutin Topical Formulations: Synthesis, Characterization and Testing[J]. International Journal of Pharmaceutics, 2013, 457(1):177⁃186. |
27 | LI C, QIU X L, LU L X, et al. Preparation of Low⁃density Polyethylene Film with Quercetin and Α⁃tocopherol Loaded with Mesoporous Silica for Synergetic⁃release Antioxidant Active Packaging[J]. Journal of Food Process Engineering, 2019, 42(5):e13088. |
28 | FENG Y J, JIANG Y, HUANG Q, et al. High Antioxidative Performance of Layered Double Hydroxides/Polypropylene Composite with Intercalation of Low⁃molecular⁃weight Phenolic Antioxidant[J]. Industrial & Engineering Chemistry Research, 2014, 53(6):2 287⁃2 292. |
29 | ZHANG Q, JIAO Q, LEROUX F, et al. Antioxidant Intercalated Zn⁃containing Layered Double Hydroxides: Preparation, Performance and Migration Properties[J]. New Journal of Chemistry, 2017, 41(6):2 364⁃2 371. |
30 | ZHANG Q, LEROUX F, TANG P G, et al. Low Molecular Weight Hindered Amine Light Stabilizers (HALS) Intercalated MgAl⁃Layered Double Hydroxides: Preparation and Anti⁃aging Performance in Polypropylene Nanocomposites[J]. Polymer Degradation and Stability, 2018, 154:55⁃61. |
31 | DINTCHEVA N T, AL⁃MALAIKA S, MORICI E, et al. Thermo⁃oxidative Stabilization of Poly(lactic acid)⁃based Nanocomposites through the Incorporation of Clay with In⁃built Antioxidant Activity[J]. Journal of Applied Polymer Science, 2017, 134(24): DOI:10.1002/app.44 974. |
32 | DINTCHEVA N T, AL⁃MALAIKA S, ARRIGO R, et al. Novel Strategic Approach for the Thermo⁃ and Photo⁃ Oxidative Stabilization of Polyolefin/Clay Nanocomposites[J]. Polymer Degradation and Stability, 2017, 145:41⁃51. |
33 | DINTCHEVA N T, AL⁃MALAIKA S, MORICI E. Novel Organo⁃Modifier for Thermally⁃stable Polymer⁃layered Silicate Nanocomposites[J]. Polymer Degradation and Stability, 2015, 122:88⁃101. |
34 | BEDIAKO E G, NYANKSON E, DODOO⁃ARHIN D, et al. Modified Halloysite Nanoclay as a Vehicle for Sustained Drug Delivery[J]. Heliyon, 2018, 4(7):e00689. |
35 | FAN Q Q, HAN G P, CHENG W L, et al. Effect of Intercalation Structure of Organo⁃Modified Montmorillonite/Polylactic Acid on Wheat Straw Fiber/Polylactic Acid Composites[J]. Polymers, 2018, 10(8):896. |
36 | HÁRI J, POLYÁK P, MESTER D, et al. Adsorption of an Active Molecule on the Surface of Halloysite for Controlled Release Application: Interaction, Orientation, Consequences[J]. Applied Clay Science, 2016, 132/133:167⁃174. |
37 | 杨 春. 一维无机纳米管负载缓释防老剂制备高性能耐老化橡胶的研究[D]. 北京: 北京化工大学, 2017. |
[1] | 王琳. 低黄变复配抗氧体系对PE⁃HD发黄问题改善评价[J]. 中国塑料, 2022, 36(1): 73-77. |
[2] | 邢剑, 张书诚, 余琴, 李长龙, 徐珍珍. 高温抗氧剂对聚苯硫醚结构与性能的影响[J]. 中国塑料, 2021, 35(4): 79-85. |
[3] | 刘义, 郭晓东, 包璐璐, 舒成, 李永伦, 王勇, 李国锋, 杜善明. 复合抗氧剂在煤基聚丙烯中的应用研究[J]. 中国塑料, 2021, 35(2): 84-89. |
[4] | 郑鹏程, 李瑞龙, 陈凑喜, 张守玉, 姜如愿, 陈同海, 宋程鹏, 焦旗. 新型三元复配抗氧体系的设计及其在煤基均聚PP中的应用[J]. 中国塑料, 2021, 35(12): 1-8. |
[5] | 李子甲, 甄恩龙, 焦保雷, 钱真, 甄卫军, 赵玲. 密度和黏结性可控的PE/POE/CaCO3体系颗粒流道调整剂的制备[J]. 中国塑料, 2020, 34(6): 14-19. |
[6] | 马秋;宋伟华;梁娜;李术;顾鹏云;李淑慧. 适用于汽车尾门板的热塑性材料力学行为研究[J]. 中国塑料, 2017, 31(8): 84-87 . |
[7] | 热依扎·别坎;马俊红;倪玲贵;阿山卡德尔·居马卡德尔;买买提江.依米提. 不同抗氧剂体系对聚丙烯热氧光老化的稳定作用[J]. 中国塑料, 2017, 31(5): 78-83 . |
[8] | 申利国;李建喜;林红军;单永东. POE/PP共混体系的构建及其性能研究[J]. 中国塑料, 2017, 31(2): 38-42 . |
[9] | 王俊;王玉如;王嘉明;王华;李翠勤. 一种苯基2萘胺抗氧剂的合成与应用[J]. 中国塑料, 2017, 31(1): 87-92 . |
[10] | 李奇;赵雪松;王伟东;李伏雨. 木粉和抗氧剂对废旧PE-HD/沙柳复合材料性能的影响[J]. 中国塑料, 2016, 30(12): 97-102 . |
[11] | 董金虎. PP-g-MAH用量对废旧聚烯烃/木粉复合材料性能的影响[J]. 中国塑料, 2016, 30(09): 82-87 . |
[12] | 蔡瑞龙;丁雪佳;张韦巍. 电子束辐照灭菌用PP材料改性研究[J]. 中国塑料, 2016, 30(07): 34-37 . |
[13] | 王俊;王玉如;李翠勤;施伟光. 聚烯烃中受阻酚类抗氧剂的抗氧化性能评价方法[J]. 中国塑料, 2015, 29(11): 17-26 . |
[14] | 蔡宏国. 维生素E作为聚合物抗氧剂的研究与应用现状[J]. 中国塑料, 2015, 29(05): 14-19 . |
[15] | 郭骏骏;晏华;包河彬. 聚烯烃老化评价实验方法评述[J]. 中国塑料, 2014, 28(04): 0-22 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||