
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (11): 46-61.DOI: 10.19491/j.issn.1001-9278.2023.11.006
收稿日期:
2023-03-13
出版日期:
2023-11-26
发布日期:
2023-11-22
通讯作者:
万贤(1979—),女,副教授,从事相变蓄能材料,冷链运输保温材料,缓释材料等研究,wanxian@btbu.edu.cn基金资助:
ZHAO Hejin1, WAN Xian1(), LU Jiahui1, ZHANG Hongyu1, GUO Baohua2
Received:
2023-03-13
Online:
2023-11-26
Published:
2023-11-22
Contact:
WAN Xian
E-mail:wanxian@btbu.edu.cn
Supported by:
摘要:
以国内外建筑节能发展现状、我国建筑领域的能源消耗为研究背景,总结了相变储能材料的分类,分析了建筑相变材料的选用,并调研了相变储能技术在建筑节能领域的应用和现阶段存在的不足,对相变储能材料在建筑领域中的应用发展前景做出了展望。
中图分类号:
赵合瑾, 万贤, 路佳慧, 张红雨, 郭宝华. 相变储能材料在建筑领域的发展和应用[J]. 中国塑料, 2023, 37(11): 46-61.
ZHAO Hejin, WAN Xian, LU Jiahui, ZHANG Hongyu, GUO Baohua. Development and applications of phase⁃change energy⁃storage material in architecture[J]. China Plastics, 2023, 37(11): 46-61.
项目 | 焓/J·g-1 | 熔融温度/℃ | 比热容(固态)/ J·(kg·K) -1 | 比热容(液态)/J·(kg·K) -1 | 密度(固态)/kg·m-3 | 密度(液态)/kg·m-3 | 热导率(固态)/W·(m·K) -1 | 热导率(液态)/W·(m·K) -1 |
---|---|---|---|---|---|---|---|---|
数值 | 210 | 48 | 2 410 | 2 410 | 1 600 | 1 666 | 0.45 | 0.45 |
项目 | 焓/J·g-1 | 熔融温度/℃ | 比热容(固态)/ J·(kg·K) -1 | 比热容(液态)/J·(kg·K) -1 | 密度(固态)/kg·m-3 | 密度(液态)/kg·m-3 | 热导率(固态)/W·(m·K) -1 | 热导率(液态)/W·(m·K) -1 |
---|---|---|---|---|---|---|---|---|
数值 | 210 | 48 | 2 410 | 2 410 | 1 600 | 1 666 | 0.45 | 0.45 |
1 | Lefebvre D, Tezel F H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications[J]. Renewable and Sustainable Energy Reviews, 2017,67:116⁃125. |
2 | 李俊峰.中国能源“十三五”回顾与“十四五”展望[J].中国电力企业管理, 2020(31):71⁃75. |
LI J F. Review of China's "13th five⁃year plan" and prospect of "14th five⁃year plan"[J]. China Power Enterprise Management, 2020(31):71⁃75. | |
3 | 丁宣升, 曹勇, 刘潇潇, 等.能源革命成效显著 能源转型蹄疾步稳——中国能源“十三五”回顾与“十四五”展望[J].当代石油石化, 2021,29(2):11⁃19. |
DING X S, CAO Y, LIU X X,et al. Remarkable achievements in energy revolution and steady progress in energy transformation——review of China's "13th five⁃year plan" and prospect of "14th five⁃year plan"[J]. Contemporary Petroleum Fossilization, 2021,29(2):11⁃19. | |
4 | Zhang L, Wang Y H. Beijing and New York city: a comparison of building energy efficiency policies[M]. 2019:263:32025. |
5 | Economidou M, Todeschi V, Bertoldi P, et al. Review of 50 years of EU energy efficiency policies for buildings[J]. Energy and Buildings, 2020,225:110322. |
6 | 魏雪.建筑节能发展研究文献综述[J].基建管理优化, 2019,1:13⁃16. |
WEI X. Literature review of building energy conservation development[J]. Infrastructure Management Optimization, 2019,1:13⁃16. | |
7 | 吴景山, 孙起.新时期我国建筑节能与绿色建筑立法需求分析与对策研究[J]. 建设科技, 2021,19:12⁃16. |
WU J S, SUN Q. The demand analysis and countermeasure research of building energy saving and green building legislation in the new period[J]. Construction Technology, 2021,19:12⁃16. | |
8 | 韩听雨.相变材料的制作工艺及其在建筑材料领域的应用研究[J].城市建筑,2022,19(6):169⁃171. |
HAN T Y. Fabrication technology of phase change materials and its application in the field of building materials[J]. Urban architecture, 2022,19(6):169⁃171. | |
9 | 莫非. 西部储能迎机遇[N]. 中国电力报, 2021⁃12⁃22. |
10 | 张洋, 刘长滨, 屈宏乐, 等.严寒地区建筑能耗统计方法和节能潜力分析——以沈阳市为例[J].建筑经济, 2008,2:80⁃83. |
ZHANG Y, LIU C B, QU H L, et al. Statistical methods of building energy consumption and analysis of energy saving potential in cold region⁃a case study of Shenyang city[J]. Construction Economy,2008,2:80⁃83. | |
11 | 谢晓娜.建筑能耗模拟用楼地和热桥传热计算方法研究[D].北京:清华大学, 2006. |
12 | Rawa M J H, Abu⁃Hamdeh N H, Karimipour A, et al. Phase change material dependency on solar power plant building through examination of energy⁃saving[J]. Journal of Energy Storage, 2022,45:103718. |
13 | 黄港,邱玮,黄伟颖,等.相变储能材料的研究与发展[J].材料科学与工艺,2022,30(3):80⁃96. |
HUANG G, QIU W, HUANG W Y, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022,30(3):80⁃96. | |
14 | 郭学伯, 范良迟, 许浈婧, 等.助力节能降碳的相变储热材料研究和应用进展[J].发电技术, 2022:1⁃14. |
GUO X B, FAN L C, XU Z J, et al. Research and application progress of phase change heat storage materials for energy saving and carbon reduction[J]. Power Generation Technology, 2022:1⁃14. | |
15 | 张宁,胡安,熊莲,等.低温相变储能材料及其应用研究[J].新能源进展,2020,8(4):304⁃312. |
ZHANG N, HU A, XIONG L, et al. Research on low temperature phase change energy storage materials and its application[J]. New Energy Progress,2020,8(4):304⁃312. | |
16 | Purohit B K, Sistla V S. Inorganic salt hydrate for thermal energy storage application: A review[J]. Energy Storage, 2021,3(2):212. |
17 | Costa S C, Kenisarin M. A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022,154:111812. |
18 | Aridi R, Faraj J, Ali S, et al. Energy recovery in air conditioning systems: comprehensive review, classifications, critical analysis, and potential recommendations[J]. Energies, 2021, 14(18):5869. |
19 | 李国俭. 相变储能材料开发与封装技术研究进展[J].热力发电,2023,52(2):23⁃31. |
LI G J. Research progress in development and packaging technology of phase change energy storage materials [J]. Thermal Power Generation,2023,52(2):23⁃31. | |
20 | Aridi R, Yehya A. Review on the sustainability of phase⁃change materials used in buildings[J]. Energy Conversion and Management: X,2022, 15:100237. |
21 | Ho C J, Guo Y W, Yang T F, et al. Numerical study on forced convection of water⁃based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini⁃channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020,157:119965. |
22 | Mir⁃Azizi Z R, Sharifzadeh E, Rahimpour F. Thermal analysis of ZnO/hollow graphene⁃oxide/polyester complex⁃ and simple⁃structure nanocomposites: analytical, simulation and experimental approaches[J]. Iranian Polymer Journal, 2022,31(6):717⁃727. |
23 | Torokhov V G, Chukov D I, Tcherdyntsev V V, et al. Mechanical and thermophysical properties of carbon fiber⁃reinforced polyethersulfone[J]. Polymers, 2022,14(14): 2956. |
24 | 蒋达华,杨昊天,徐玉珍,等.硅藻土定形相变材料的制备及影响因素研究[J].非金属矿,2021,44(5):19⁃22. |
JIANG D H, YANG H T, XU Y Z, et al. Study on preparation and influencing factors of diatomite shaped phase change materials[J]. Non⁃metallic Ore,2021,44(5):19⁃22. | |
25 | Zhang Y F, Cai R, Wang D S, et al. Lightweight, low⁃cost Co2SiO4@diatomite core⁃shell composite material for high⁃efficiency microwave absorption[J]. Molecules, 2022,27(3):1055. |
26 | Rathore P K S, Shukla S K. Improvement in thermal properties of PCM/expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications[J]. Renewable Energy, 2021,176:295⁃304. |
27 | Wang J H, Li H J, Han L T, et al. Electrochemical performance of bamboo porous C@SiO2 anode composites[J]. International Journal of Electrochemical Science, 2022,17(9): 20964. |
28 | 柳馨. 芒硝基复合相变储能材料热性能及封装材料研究[D].西宁:青海大学,2017. |
29 | 张红雨,万贤,陈妍,等. 相变蓄冷材料在冷链物流中的研究进展[J].中国塑料,2021,35(4):106⁃115. |
ZHANG H Y, WAN X, CHEN Y, et al. Research progress of phase change storage materials in cold chain logistics[J]. China Plastics,2021,35(4):106⁃115. | |
30 | 常钊,陈宝明,罗丹.相变储能材料研究进展[J].煤气与热力,2021,41(4):21⁃27,98⁃99. |
CHANG Z, CHEN B M, LUO D. Research progress of phase change energy storage material[J]. Journal of Gas and Heat, 2021,41(4): 21⁃27,98⁃99. | |
31 | Tao J L, Luan J D, Liu Y, et al. Technology development and application prospects of organic⁃based phase change materials: an overview[J]. Renewable and Sustainable Energy Reviews, 2022,159:112175. |
32 | Chen M M, Zhao F Q. Research and application of phase change energy storage technology in construction and buildings materials[J]. Innovative Materials: Engineering and Applications, 2014,1 052:377⁃381. |
33 | Rathore P K S, Gupta N K, Yadav D, et al. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review[J]. Sustainable Cities and Society, 2022,79:103690. |
34 | Hawes D W, Banu D, Feldman D. Latent heat storage in concrete[J]. Solar Energy Materials, 1989,19(3/5): 90014. |
35 | Ling T C, Poon C S. Use of phase change materials for thermal energy storage in concrete: An overview[J]. Construction and Building Materials, 2013,46:55⁃62. |
36 | Cárdenas⁃Ramírez C, Jaramillo F, Gómez M. Systematic review of encapsulation and shape⁃stabilization of phase change materials[J]. Journal of Energy Storage, 2020,30:101495. |
37 | Rathore P S K, Shukla S K. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review[J]. Energy and Buildings, 2021,236:110799. |
38 | Li X H, Zhu Z Q, Yang P, et al. Carbonized wood loaded with carbon dots for preparation long⁃term shape⁃stabilized composite phase change materials with superior thermal energy conversion capacity[J]. Renewable Energy, 2021,174:19⁃30. |
39 | Guo M H, Xu P K, Lv J, et al. Engineering nanocellulose/graphene hybrid aerogel for form⁃stable composite phase change materials with high phase change enthalpy for energy storage[J]. Diamond and Related Materials, 2022,127:109131. |
40 | Wang Y C, Xiao Y, Fu X W, et al. A stearic acid⁃based shape⁃stabilized phase change material supported by poly(vinyl alcohol)⁃modified branched polyethylene imine[J]. Journal of Thermal Analysis and Calorimetry, 2022,147(4):3 099⁃3 106. |
41 | Luo J W, Cheng X M, Ji W, et al. N⁃doped porous carbon chain with 3D interconnected network structure to modify expanded graphite for efficient thermal energy storage materials[J]. Journal of Energy Storage, 2022,47:103634. |
42 | Wang R, Li Q Y, Du G T, et al. A hydrogel⁃like form⁃stable phase change material with high loading efficiency supported by a three dimensional metal⁃organic network[J]. Chemical Engineering Journal, 2021,420:129898. |
43 | Jamil F, Ali H M, Janjua M M. MXene based advanced materials for thermal energy storage: A recent review[J]. Journal of Energy Storage, 2021,35:102322. |
44 | Jiang T Y, Zhang Y L, Olayiwola S, et al. Biomass⁃derived porous carbons support in phase change materials for building energy efficiency: a review[J]. Materials Today Energy, 2022,23:100905. |
45 | 周全, 郭红斌, 周胜男, 等.相变储能墙板主被动节能评价方法研究[J]. 功能材料, 2014,45(11):11 013⁃11 017. |
ZHOU Q, GUO H B, ZHOU S N, et al. Study on Active and passive energy saving evaluation method of phase change energy storage wallboard[J]. Functional Material, 2014,45(11):11 013⁃11 017. | |
46 | 张云峰,张璐,刘鹏,等.纳米SiO_2改性石蜡相变微胶囊涂料的制备及性能表征[J].涂料工业,2021,51(1):34⁃39. |
ZHANG Y F, ZHANG L, LIU P, et al. Preparation and characterization of nano⁃SiO2 modified paraffin phase change microcapsule coatings[J]. Coating Industry, 2021,51(1):34⁃39. | |
47 | Zhang Y C, Zhang X L, Xu X F, et al. Preparation and characterization of phase change energy storage gypsum [J]. Thermal Science, 2021,25(6):4 737⁃4 748. |
48 | Li S H, Sun G F, Zou K K, et al. Experimental research on the dynamic thermal performance of a novel triple⁃pane building window filled with PCM[J]. Sustainable Cities and Society, 2016,27:15⁃22. |
49 | Goia F, Perino M, Serra V. Improving thermal comfort conditions by means of PCM glazing systems[J]. Energy and Buildings, 2013,60:442⁃452. |
50 | Liu C Y, Wu Y Y, Zhu Y J, et al. Experimental investigation of optical and thermal performance of a PCM⁃glazed unit for building applications[J]. Energy and Buildings, 2018,158:794⁃800. |
51 | 李栋,吴洋洋,刘昌宇,等.含石蜡层玻璃幕墙动态传热特性实验[J].太阳能学报,2018,39(11):3 049⁃3 052. |
LI D, WU Y Y, LIU C Y, et al. Experiment on dynamic heat transfer characteristics of glass curtain wall with paraffin layer[J]. Journal of Solar Energy,2018,39(11):3 049⁃3 052. | |
52 | Zhang S, Hu W Y, Li D, et al. Energy efficiency optimization of PCM and aerogel⁃filled multiple glazing windows[J]. Energy, 2021,222:119916. |
53 | Shukla N, Fallahi A, Kosny J.Performance characterization of PCM impregnated gypsum board for building applications[J].Energy Procedia, 2012, 30(1):370⁃379. |
54 | Afgan S, Bing C. Scientometric review of international research trends on thermal energy storage cement based composites via integration of phase change materials from 1993 to 2020[J]. Construction and Building Materials, 2021,278:122344. |
55 | Guardia C, Barluenga G, Palomar I, et al. Thermal enhanced cement⁃lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers[J]. Construction and Building Materials, 2019,221:586⁃594. |
56 | Al⁃Yasiri Q, Szabó M. Experimental evaluation of the optimal position of a macroencapsulated phase change material incorporated composite roof under hot climate conditions[J]. Sustainable Energy Technologies and Assessments, 2021,45:101121. |
57 | Boobalakrishnan P, Manoj K P, Balaji G, et al. Thermal management of metal roof building using phase change material (PCM)[J]. Materials Today: Proceedings, 2021,47:5 052⁃5 058. |
58 | Louanate A, Otmani R E, Kandoussi K, et al. Dynamic modeling and performance assessment of single and double phase change material layer⁃integrated buildings in Mediterranean climate zone[J]. Journal of Building Physics, 2021,44(5):461⁃478. |
59 | 张家玮,黄玮,黄大建,等.基于微孔漂珠的相变微胶囊制备及其对砂浆力学和热性能影响[J]. 复合材料学报, 2023, 40(8):4 708⁃4 724. |
ZHANG J W, HUANG W, HUANG D J, et al. Preparation of Phase change microcapsules based on Microporous Bleached Beads and its Effect on mechanical and thermal Properties of mortar [J]. Journal of Composites,2023, 40(8):4 708⁃4 724. | |
60 | Wang Z J, Qiao Y H, Liu Y, et al. Thermal storage performance of building envelopes for nearly⁃zero energy buildings during cooling season in western China: an experimental study[J]. Building and Environment, 2021,194:107709. |
61 | Xu Y, Sun B B, Liu L J, et al. The numerical simulation of radiant floor cooling and heating system with double phase change energy storage and the thermal performance[J]. Journal of Energy Storage, 2021,40:102635. |
62 | Sun W C, Zhang Y X, Ling Z Y, et al. Experimental investigation on the thermal performance of double⁃layer PCM radiant floor system containing two types of inorganic composite PCMs[J]. Energy and Buildings, 2020,211:109806. |
63 | 卢奇, 孟宁.相变蓄热材料在太阳能地板辐射供暖系统中的应用分析[J]. 暖通空调, 2021,51(2):27⁃30. |
LU Q, MENG N. Application analysis of phase change heat storage materials in solar radiant floor heating system[J]. Heating Ventilating & Air Conditioning, 2021,51(2):27⁃30. | |
64 | 林坤平, 张寅平, 狄洪发.相变蓄热电加热地板的优点与应用可行性分析[C]// 全国暖通空调制冷2002年学术年会论文集/上册. 北京:中国建筑工业出版社, 2002:169⁃172. |
65 | Yu K Y, Liu Y S, Yang Y Z. Review on form⁃stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties[J]. Applied Energy, 2021,292:116845. |
66 | Gao Y T, Zhang X L, Xu X F, et al. Application and research progress of phase change energy storage in new energy utilization[J]. Journal of Molecular Liquids, 2021,343:117554. |
67 | Zhang Y C, Zhang X L, Xu X F, et al. Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials[J]. Journal of Molecular Liquids, 2019,280:360⁃366. |
68 | 王长君.相变储能技术在热泵系统中的应用综述[J].综合智慧能源,2022,44(4):51⁃64. |
WANG C J. Summary of phase change energy storage technology in heat pump systems[J]. Integrated Intelligent Energy,2022,44(4):51⁃64. | |
69 | Benli H. Energetic performance analysis of a ground⁃source heat pump system with latent heat storage for a greenhouse heating[J]. Energy Conversion and Management, 2011,52(1):581⁃589. |
70 | Kelly N J, Tuohy P G, Hawkes A D. Performance assessment of tariff⁃based air source heat pump load shifting in a UK detached dwelling featuring phase change⁃enhanced buffering[J]. Applied Thermal Engineering, 2014,71(2):809⁃820. |
71 | Taleb H. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings[J]. Frontiers of Architectural Research, 2014,3(2):154⁃165. |
72 | Saffari M, De Gracia A, Ushak S, et al. Passive cooling of buildings with phase change materials using whole⁃building energy simulation tools: A review[J]. Renewable and Sustainable Energy Reviews, 2017,80:1 239⁃1 255. |
73 | 张涛.巴斯夫的“3升房”[J].城市住宅,2012, 205(4):101. |
ZHANG T. BASF's "3⁃liter House"[J]. Urban Housing, 2012, 205(4):101. | |
74 | 姜舒,宋德萱.德国生物立面在我国既有建筑绿色改造设计的应用初探[J].江苏建筑,2015,6:97⁃99. |
JIANG S, SONG D X. Preliminary study on the application of German biological facade in the green renovation design of existing buildings in China[J]. Jiangsu Architecture,2015,6:97⁃99. | |
75 | Wang Z, Li Z, Lu G, et al. Experimental study on phase change heat storage of valley electricity and economic evaluation of commercial building heating[J]. Sustainable Cities and Society, 2022, 86:104098. |
76 | Pan Y, Zhao X D, Zhao X F. Application of the phase change material in building energy efficiency[J]. Advances in Applied Materials and Electronics Engineering II, 2013,684:168. |
77 | Tuncbilek E, Arici M, Bouadila S, et al. Seasonal and annual performance analysis of PCM⁃integrated building brick under the climatic conditions of Marmara region[J]. Journal of Thermal Analysis and Calorimetry, 2020,141(1):613⁃624. |
78 | Rathore P K S, Shukla S K, Gupta N K. Yearly analysis of peak temperature, thermal amplitude, time lag and decrement factor of a building envelope in tropical climate[J]. Journal of Building Engineering, 2020,31:101459. |
79 | Hunger M, Entrop A G, Mandilaras I, et al. The behavior of self⁃compacting concrete containing micro⁃encapsulated phase change materials[J]. Cement and Concrete Composites, 2009,31(10): 731⁃743. |
80 | Haider M Z, Jin X H, Sharma R, et al. Enhancing the compressive strength of thermal energy storage concrete containing a low⁃temperature phase change material using silica fume and multiwalled carbon nanotubes[J]. Construction and Building Materials, 2022,314:125659. |
81 | Faraj K, Khaled M, Faraj J, et al. A review on phase change materials for thermal energy storage in buildings: heating and hybrid applications[J]. Journal of Energy Storage, 2021,33:101913. |
82 | Xu L, Dai L C, Yin L Z, et al. Research on the climate response of variable thermo⁃physical property building envelopes: a literature review[J]. Energy and Buildings, 2020,226:110398. |
[1] | 张强, 张健, 林琳, 刘静, 王天贺. 相变储能微胶囊壁材传热强化措施研究进展[J]. 中国塑料, 2022, 36(7): 187-196. |
[2] | 李坚. 我国塑料机械行业“十一五”期间发展概况和“十二五”期间发展趋势浅析[J]. 中国塑料, 2011, 25(01): 1-7 . |
[3] | 杨春柏. 硬质聚氨醋泡沫塑料研究进展[J]. 中国塑料, 2009, 23(02): 12-15 . |
[4] | 丁永红, 俞强, 承民联. 交联聚乙烯/石蜡复合相变储能材料的研究[J]. 中国塑料, 2008, 22(01): 20-24 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||