
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (4): 109-115.DOI: 10.19491/j.issn.1001-9278.2024.04.018
• 综述 • 上一篇
收稿日期:
2023-11-17
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
李琛(1979-),女,副教授,从事生物质功能性包装材料、运输包装技术研究工作,lichen_nefu@163.com作者简介:
孟凡悦(1999-),女,硕士研究生,主要从事生物基材料改性研究工作,16645130227@163.com
MENG Fanyue(), WEN Yue, LI Chen(
), GAO Shan
Received:
2023-11-17
Online:
2024-04-26
Published:
2024-04-22
Contact:
LI Chen
E-mail:16645130227@163.com;lichen_nefu@163.com
摘要:
综述了生物基塑料包装组分、应用现状及趋势,分析了微生物的需氧降解环境条件以及影响塑料生物降解性的因素,指出目前降解过程中的问题及不足,对未来可降解生物基材料的普遍应用作出展望性分析。
中图分类号:
孟凡悦, 文悦, 李琛, 高珊. 生物基塑料包装需氧生物降解研究进展[J]. 中国塑料, 2024, 38(4): 109-115.
MENG Fanyue, WEN Yue, LI Chen, GAO Shan. Research progress in aerobic biodegradation of bio⁃based plastic packaging materials[J]. China Plastics, 2024, 38(4): 109-115.
生物基塑料种类 | 环境 | 实验条件 | 生物降解测量方式 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
淀粉/非异氰酸酯聚羟基聚氨酯复合薄膜 | 市售天然肥沃土壤 | 温度:20~28 ℃ 相对湿度:40 % | CO2产量 | 120天后完全降解 | [ |
淀粉/低密度聚乙烯复合薄膜 | 土壤堆肥 | 温度:28~32 ℃ 相对湿度:60 % | 质量损失 | 336天后质量损失6.3 % | [ |
淀粉/壳聚糖纳米颗复合薄膜 | 种植土壤 | 温度:20~25 ℃ 相对湿度:<25 % | 质量损失 | 32天内完全降解 | [ |
PLA/PHB复合薄膜 | 与珍珠岩等量混合的农业土壤 | 温度:20 °C, pH=7.5 | CO2产量 | 365天降解55 % | [ |
PHA薄膜 | 农田表层土 | 土壤湿度:30 %~40 % | 质量损失 | 60天降解25 % | [38] |
PHB薄膜 | 农业土壤 | 温度:28 ℃ 相对湿度:50 % | 质量损失 | 35天后质量损失95 % | [ |
PLA | 农业土壤 | 相对湿度:35 % | 质量损失 | 60天后质量损失33 % | [ |
PLA/壳聚糖复合材料 | 花园土掩埋 | 温度:35 ℃ 相对湿度:50 % | 质量损失 | 12个月后质量损失约22 % | [ |
生物基塑料种类 | 环境 | 实验条件 | 生物降解测量方式 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
淀粉/非异氰酸酯聚羟基聚氨酯复合薄膜 | 市售天然肥沃土壤 | 温度:20~28 ℃ 相对湿度:40 % | CO2产量 | 120天后完全降解 | [ |
淀粉/低密度聚乙烯复合薄膜 | 土壤堆肥 | 温度:28~32 ℃ 相对湿度:60 % | 质量损失 | 336天后质量损失6.3 % | [ |
淀粉/壳聚糖纳米颗复合薄膜 | 种植土壤 | 温度:20~25 ℃ 相对湿度:<25 % | 质量损失 | 32天内完全降解 | [ |
PLA/PHB复合薄膜 | 与珍珠岩等量混合的农业土壤 | 温度:20 °C, pH=7.5 | CO2产量 | 365天降解55 % | [ |
PHA薄膜 | 农田表层土 | 土壤湿度:30 %~40 % | 质量损失 | 60天降解25 % | [38] |
PHB薄膜 | 农业土壤 | 温度:28 ℃ 相对湿度:50 % | 质量损失 | 35天后质量损失95 % | [ |
PLA | 农业土壤 | 相对湿度:35 % | 质量损失 | 60天后质量损失33 % | [ |
PLA/壳聚糖复合材料 | 花园土掩埋 | 温度:35 ℃ 相对湿度:50 % | 质量损失 | 12个月后质量损失约22 % | [ |
生物基塑料种类 | 环境 | 实验条件 | 生物降解测量标准 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
淀粉/聚酯混合材料 | 海水 | 温度:25.7~27.9 ℃ pH:约8.17 | 傅里叶变换红外光谱技术 | 120天后淀粉含量减少约14 % | [ |
PHA薄膜 | 热带河水 | 温度:27~30 ℃ | 质量损失 | 86天后质量损失71 % | [ |
PHB薄膜 | 中国南海 | 温度:20~25 ℃ | 质量损失 | 160天后降解58 % | [ |
PHBV薄膜 | 河水 | 温度:25 ℃ | CO2产量 | 90天后降解90 % | [ |
PLA/淀粉复合材料 | 海水 | 温度:25 ℃ | 质量损失 | 12个月后质量减少约13 % | [ |
PBAT (53 %)/PLA(10 %)/淀粉(20 %)薄膜 | 中国海口湾海水 | 温度:24~26 ℃ | 扫描电子显微镜观察 | 90天后形成小碎片 | [ |
PLA薄膜 | 人工海水 | 温度:25 ℃ | 质量损失 | 12个月内无明显降解 | [ |
生物基塑料种类 | 环境 | 实验条件 | 生物降解测量标准 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
淀粉/聚酯混合材料 | 海水 | 温度:25.7~27.9 ℃ pH:约8.17 | 傅里叶变换红外光谱技术 | 120天后淀粉含量减少约14 % | [ |
PHA薄膜 | 热带河水 | 温度:27~30 ℃ | 质量损失 | 86天后质量损失71 % | [ |
PHB薄膜 | 中国南海 | 温度:20~25 ℃ | 质量损失 | 160天后降解58 % | [ |
PHBV薄膜 | 河水 | 温度:25 ℃ | CO2产量 | 90天后降解90 % | [ |
PLA/淀粉复合材料 | 海水 | 温度:25 ℃ | 质量损失 | 12个月后质量减少约13 % | [ |
PBAT (53 %)/PLA(10 %)/淀粉(20 %)薄膜 | 中国海口湾海水 | 温度:24~26 ℃ | 扫描电子显微镜观察 | 90天后形成小碎片 | [ |
PLA薄膜 | 人工海水 | 温度:25 ℃ | 质量损失 | 12个月内无明显降解 | [ |
生物基塑料的种类 | 环境 | 实验条件 | 生物降解测量方式 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
热塑性淀粉薄膜 | 商业堆肥箱 | 加入由杂货店丢弃的蔬菜和水果组成的生物垃圾和树皮和木屑的混合物。 | 质量损失 | 49天后完全降解 | [ |
淀粉基生物聚合物Mater⁃Bi®薄膜 | 梯形堆肥器 | 由食物垃圾和绿色垃圾(20 %草料、10 %木屑、20 %蔬菜、30 %水果、4 %金枪鱼、6 %酸奶、9 %牛粪接种物)组成。 | 质量损失 | 45天后淀粉损失40 % | [ |
木薯淀粉基生物塑料 | Sahabat Tani堆肥土壤商品 | 温度:24.3~29.2 ℃。 相对湿度:74 %~93 %。 | 质量损失 | 30天降解56 % | [ |
PHA微塑料 | 堆肥 | 新鲜牛粪和锯末。 | 质量损失 | 60天降解29 % | [ |
PHB薄膜 | 堆肥 | 堆肥工厂有机废物。 | 质量损失 | 110天后降解79.9 % | [ |
PLA | 堆肥 | 根据ASTM国际D5338⁃15标准方案中对堆肥的理化特性进行了修改。 | CO2产量 | 90天内体重减轻了86 % | [ |
PLA薄膜 | 堆肥 | 从污水处理厂提取微生物混合物。 | O2消耗量 | 7天耗氧mgO2/L | [ |
生物基塑料的种类 | 环境 | 实验条件 | 生物降解测量方式 | 降解程度 | 参考文献 |
---|---|---|---|---|---|
热塑性淀粉薄膜 | 商业堆肥箱 | 加入由杂货店丢弃的蔬菜和水果组成的生物垃圾和树皮和木屑的混合物。 | 质量损失 | 49天后完全降解 | [ |
淀粉基生物聚合物Mater⁃Bi®薄膜 | 梯形堆肥器 | 由食物垃圾和绿色垃圾(20 %草料、10 %木屑、20 %蔬菜、30 %水果、4 %金枪鱼、6 %酸奶、9 %牛粪接种物)组成。 | 质量损失 | 45天后淀粉损失40 % | [ |
木薯淀粉基生物塑料 | Sahabat Tani堆肥土壤商品 | 温度:24.3~29.2 ℃。 相对湿度:74 %~93 %。 | 质量损失 | 30天降解56 % | [ |
PHA微塑料 | 堆肥 | 新鲜牛粪和锯末。 | 质量损失 | 60天降解29 % | [ |
PHB薄膜 | 堆肥 | 堆肥工厂有机废物。 | 质量损失 | 110天后降解79.9 % | [ |
PLA | 堆肥 | 根据ASTM国际D5338⁃15标准方案中对堆肥的理化特性进行了修改。 | CO2产量 | 90天内体重减轻了86 % | [ |
PLA薄膜 | 堆肥 | 从污水处理厂提取微生物混合物。 | O2消耗量 | 7天耗氧mgO2/L | [ |
材料性质 | 影响因素 | 生物降解性影响 |
---|---|---|
表面条件 | 表面积 | 表面积越高越有利于微生物附着和降解 |
亲水性和疏水性 | 较高的亲水性有利于微生物吸附和降解 | |
一阶结构 | 化学结构 | 化学结构不同的材料微生物的降解能力有差异,含侧链的聚酯较难被微生物降解 |
分子量 | 低分子量聚合物更易降解 | |
分子量分布 | 窄分子量分布有利于降解,广分子量分布降解较慢 | |
高阶结构 | Tg | 聚合物较低的玻璃转变温度有利于生物降解 |
熔点 | 具有较低的熔点材料更容易降解 | |
弹性模量 | 低弹性模量聚合物有利于降解 | |
结晶度 | 低结晶度生物基塑料有利于降解,无定形区域的分子松散堆积,使其更容易被降解 |
材料性质 | 影响因素 | 生物降解性影响 |
---|---|---|
表面条件 | 表面积 | 表面积越高越有利于微生物附着和降解 |
亲水性和疏水性 | 较高的亲水性有利于微生物吸附和降解 | |
一阶结构 | 化学结构 | 化学结构不同的材料微生物的降解能力有差异,含侧链的聚酯较难被微生物降解 |
分子量 | 低分子量聚合物更易降解 | |
分子量分布 | 窄分子量分布有利于降解,广分子量分布降解较慢 | |
高阶结构 | Tg | 聚合物较低的玻璃转变温度有利于生物降解 |
熔点 | 具有较低的熔点材料更容易降解 | |
弹性模量 | 低弹性模量聚合物有利于降解 | |
结晶度 | 低结晶度生物基塑料有利于降解,无定形区域的分子松散堆积,使其更容易被降解 |
1 | Sivan A. New perspectives in plastic biodegradation[J]. Current opinion in biotechnology, 2011, 22(3): 422⁃426. |
2 | Qiao R, Wang X, Qin G, et al. Degradation mode of PBAT mulching film and control methods during its degradation induction period[J]. Mini⁃Reviews in Organic Chemistry, 2022, 19(5): 608⁃616. |
3 | Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
4 | Barnes D K A, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 1 985⁃1 998. |
5 | Wu F, Misra M, Mohanty A K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging[J]. Progress in Polymer Science, 2021, 117: 101395. |
6 | 李祖义.生物塑料引领塑料产业新方向[J].工业微生物,2019,49(4):56⁃63. |
LI Z Y. Bioplastics lead the new direction of plastics industry [J]. Industrial Microbiology, 2019, 49(4): 56⁃63. | |
7 | Jariyasakoolroj P, Leelaphiwat P, Harnkarnsujarit N. Advances in research and development of bioplastic for food packaging[J]. Journal of the Science of Food and Agriculture, 2020, 100(14): 5 032⁃5 045. |
8 | Ibrahim N I, Shahar F S, Sultan M T H, et al. Overview of bioplastic introduction and its applications in product packaging[J]. Coatings, 2021, 11(11): 1 423. |
9 | Porta R, Sabbah M, Di Pierro P. Bio⁃based materials for packaging[J]. International Journal of Molecular Sciences, 2022, 23(7): 3 611. |
10 | 聂 榕,彭 伟,吕 凡,等.生物可降解塑料厌氧消化降解研究进展[J].环境卫生工程,2023,31(2):46⁃56. |
NIE R, PENG W, LV F, et al. Research progress of anaerobic digestion degradation of biodegradable plastics [J]. Environmental Health Engineering, 2023, 31(2): 46⁃56. | |
11 | Pan Y, Farmahini⁃Farahani M, O’Hearn P, et al. An overview of bio⁃based polymers for packaging materials[J]. J. Bioresour. Bioprod, 2016, 1(3): 106⁃113. |
12 | Adhikari D, Mukai M, Kubota K, et al. Degradation of bioplastics in soil and their degradation effects on environmental microorganisms[J]. Journal of Agricultural Chemistry and Environment, 2016, 5(1): 23. |
13 | Garrison T F, Murawski A, Quirino R L. Bio⁃based polymers with potential for biodegradability[J]. Polymers, 2016, 8(7): 262. |
14 | Reichert C L, Bugnicourt E, Coltelli M B, et al. Bio⁃based packaging: Materials, modifications, industrial applications and sustainability[J]. Polymers, 2020, 12(7): 1 558. |
15 | 杨天祯.PLA环保材料在物流包装中的应用及其经济性分析[J].合成材料老化与应用,2023,52(4):131⁃133. |
YANG T Z. Application and Economic analysis of PLA environmental materials in logistics packaging [J]. Synthetic Materials Aging and Application, 2023, 52(4): 131⁃133. | |
16 | Ali W, Ali H, Gillani S, et al. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review[J]. Environmental Chemistry Letters, 2023, 21(3): 1⁃26. |
17 | Castro⁃Aguirre E, Iniguez⁃Franco F, Samsudin H, et al. Poly (lactic acid)—mass production, processing, industrial applications, and end of life[J]. Advanced Drug Delivery Reviews, 2016, 107: 333⁃366. |
18 | Chandra R, Rustgi R. Biodegradable polymers[J]. Progress in Polymer Science, 1998, 23(7): 1 273⁃1 335. |
19 | Imam S H, Glenn G M, Chiellini E. Utilization of biobased polymers in food packaging: assessment of materials, production and commercialization[J]. Emerging food Packaging Technologies, 2012: 435⁃468. |
20 | Nurul Fazita M R, Jayaraman K, Bhattacharyya D, et al. Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review[J]. Materials, 2016, 9(6): 435. |
21 | Biswas A, Cheng H N, Kuzniar G, et al. Bilayer films of poly (lactic acid) and cottonseed protein for packaging applications[J]. Polymers, 2023, 15(6): 1 425. |
22 | 张清宇,李晓如,萧锘莹,等.果蔬包装用可生物降解材料的制备与应用研究进展[J].包装工程,2022,43(7):75⁃86. |
ZHANG Q Y, LI X R, XIAO N Y, et al. Research progress on preparation and application of biodegradable materials for fruit and vegetable packaging [J]. Packaging Engineering, 2022, 43(7): 75⁃86. | |
23 | 田强运,裴树昆,马晓军,等.生物降解包装材料聚羟基脂肪酸酯的工艺研究进展[J].包装工程,2023,44(7):63⁃75. |
TIAN Q Y, PEI S K, MA X J, et al. Research progress on biodegradation of polyhydroxyl fatty acid esters in packaging materials [J]. Packaging Engineering, 2023, 44(7): 63⁃75. | |
24 | Siddiqui S A, Sundarsingh A, Bahmid N A,et al.A critical review on biodegradable food packaging for meat: materials, sustainability, regulations, and perspectives in the EU[J].Comprehensive Reviews in Food Science and Food Safety, 2023, 5: 22. |
25 | Bugnicourt E, Cinelli P, Lazzeri A, et al. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging[J]. Express Polymer Letters, 2014, 8(11): 791⁃808. |
26 | Chan C M, Vandi L J, Pratt S, et al. Insights into the biodegradation of PHA/wood composites: Micro⁃and macroscopic changes[J]. Sustainable Materials and Technologies, 2019, 21: e00099. |
27 | Arcan İ, Boyacı D, Yemenicioğlu A. The use of zein and its edible films for the development of food packaging materials[J]. Reference Module in Food Science, 2017.DOI:10.1016/B978-0-08-100596-5.21126-8 . |
28 | 佚名.全球首个商业化生产可堆肥包装薄膜面世[J].绿色包装,2021(7):16⁃17. |
Anonymous. The world's first commercially produced compostable packaging film is available [J]. Green Packaging, 2021(7): 16⁃17. | |
29 | 郑进宝,李 琛.淀粉基包装材料疏水性改善研究进展[J].化工进展,2022,41(6):3089⁃3102. |
ZHENG J B, LI C. Research progress on the improvement of hydrophobicity of starch based packaging materials [J]. Chemical Industry Progress,2022, 41(6): 3 089⁃3 102. | |
30 | 陈启杰,张 朋,游 娜,等.基于纤维素纳米晶乳化陈皮精油的淀粉基抗菌膜的制备与性能[J].食品科学,2024,45(3):134⁃141. |
CHEN Q J, ZHANG P, YOU N, et al. Preparation and properties of starch-based antibacterial film based on cellulose nanocrystalline emulsification of orange peel essential oil [J]. Journal of Food Science, 2024,45(3):134⁃141. | |
31 | Nawab A, Alam F, Hasnain A. Mango kernel starch as a novel edible coating for enhancing shelf⁃life of tomato (Solanum lycopersicum) fruit[J]. International Journal of Biological Macromolecules, 2017, 103: 581⁃586. |
32 | Polman E M N, Gruter G J M, Parsons J R, et al. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: a review[J]. Science of the Total Environment, 2021, 753: 141953. |
33 | Awasthi S K, Kumar M, Kumar V, et al. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers[J]. Environmental Pollution, 2022, 307: 119600. |
34 | Ghasemlou M, Daver F, Murdoch B J, et al. Biodegradation of novel bioplastics made of starch, polyhydroxyurethanes and cellulose nanocrystals in soil environment[J]. Science of The Total Environment, 2022, 815: 152684. |
35 | Barragán D H, Pelacho A M, Martin⁃Closas L. Degradation of agricultural biodegradable plastics in the soil under laboratory conditions[J]. Soil Research, 2016, 54(2): 216⁃224. |
36 | Othman S H, Ronzi N D A, Shapi’i R A, et al. Biodegradability of Starch Nanocomposite Films Containing Different Concentrations of Chitosan Nanoparticles in Compost and Planting Soils[J]. Coatings, 2023, 13(4): 777. |
37 | Barragán D H, Pelacho A M, Martin⁃Closas L. Degradation of agricultural biodegradable plastics in the soil under laboratory conditions[J]. Soil Research, 2016, 54(2): 216⁃224. |
3/] Barragán D H, Pelacho A M, Martin⁃Closas L. Degradation of agricultural biodegradable plastics in the soil under laboratory conditions[J]. Soil Research, 2016, 54(2): 216⁃224. | |
39 | Volova T G, Prudnikova S V, Vinogradova O N, et al. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability[J]. Microbial Ecology, 2017, 73: 353⁃367. |
40 | Wu C S. Preparation and characterization of polyhydroxyalkanoate bioplastic⁃based green renewable composites from rice husk[J]. Journal of Polymers and the Environment, 2014, 22: 384⁃392. |
41 | Kamaludin N H I, Ismail H, Rusli A, et al. Evaluation and Enhancement of Polylactic Acid Biodegradability in Soil by Blending with Chitosan[J]. Journal of Polymers and the Environment, 2023, 31: 2 727⁃2 740. |
42 | Folino A, Fazzino F, Komilis D. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics[J]. Journal of Hazardous Materials, 2020, 390: 121653. |
43 | Dey S, Tribedi P. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil[J]. 3 Biotech, 2018, 8(3): 171. |
44 | Janczak K, Dąbrowska G B, Raszkowska⁃Kaczor A, et al. Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants[J]. International Biodeterioration & Biodegradation, 2020, 155: 105087. |
45 | Zhou Y, Kumar M, Sarsaiya S, et al. Challenges and opportunities in bioremediation of micro⁃nano plastics: a review[J]. Science of the Total Environment, 2022, 802: 149823. |
46 | Siracusa V. Microbial degradation of synthetic biopolymers waste[J]. Polymers, 2019, 11(6): 1066. |
47 | Pischedda A, Tosin M, Degli⁃Innocenti F. Biodegradation of plastics in soil: the effect of temperature[J]. Polymer Degradation and Stability, 2019, 170: 109017. |
48 | Calabrò P S, Grosso M. Bioplastics and waste management[J]. Waste Management, 2018, 78: 800⁃801. |
49 | Tosin M, Weber M, Siotto M, et al. Laboratory test methods to determine the degradation of plastics in marine environmental conditions[J]. Frontiers in Microbiology, 2012, 3: 225. |
50 | Rampazzo F, Calace N, Formalewicz M, et al. An FTIR and EA⁃IRMS application to the degradation study of compostable plastic bags in the natural marine environment[J]. Applied Sciences, 2023, 13(19): 10 851. |
51 | Meereboer K W, Misra M, Mohanty A K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites[J]. Green Chemistry, 2020, 22(17): 5 519⁃5 558. |
52 | Volova T G, Boyandin A N, Vasil’ev A D, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA⁃degrading bacteria[J]. Microbiology, 2011, 80: 252⁃260. |
53 | Chen H. Assessment of biodegradation in different environmental compartments of blends and composites based on microbial poly (hydroxyalkanoate) s[D]. Pisa Univ. Pisa, 2012: 60⁃72. |
54 | Chen X, Wang L, Shi J, et al. Environmental degradation of starch/poly (lactic acid) composite in seawater[J]. Polymers and Polymer Composites, 2011, 19(7): 559⁃566. |
55 | Bao Ruiqi, Pu Jingruan, Xie Chaolin, et al. Aging of biodegradable blended plastic generates microplastics and attached bacterial communities in air and aqueous environments[J]. Journal of Hazardous Materials, 2022, 434: 128891. |
56 | Bagheri A R, Laforsch C, Greiner A, et al. Fate of so‐called biodegradable polymers in seawater and freshwater[J]. Global Challenges, 2017, 1(4): 1700048. |
57 | Samantaray P K, Little A, Wemyss A M, et al. Design and control of compostability in synthetic biopolyesters[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(28): 9 151⁃9 164. |
58 | Folino A, Fazzino F, Komilis D. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics[J]. Journal of Hazardous Materials, 2020, 390: 121653. |
59 | Albertsson A C, Hakkarainen M. Designed to degrade[J]. Science, 2017, 358(6365): 872⁃873. |
60 | Vikman M, Itävaara M, Poutanen K. Measurement of the biodegradation of starch⁃based materials by enzymatic methods and composting[J]. Journal of Environmental Polymer Degradation, 1995, 3: 23⁃29. |
61 | Ruggero F, Carretti E, Gori R, et al. Monitoring of degradation of starch⁃based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis[J]. Chemosphere, 2020, 246: 125770. |
62 | Wicaksono J A, Purwadaria T, Yulandi A, et al. Bacterial dynamics during the burial of starch⁃based bioplastic and oxo⁃low⁃density⁃polyethylene in compost soil[J]. BMC Microbiology, 2022, 22(1): 309. |
63 | Sun Y, Shaheen S M, Ali E F, et al. Enhancing microplastics biodegradation during composting using livestock manure biochar[J]. Environmental Pollution, 2022, 306: 119339. |
64 | Weng Y X, Wang X L, Wang Y Z. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions[J]. Polymer Testing, 2011, 30(4): 372⁃380. |
65 | Kalita N K, Bhasney S M, Mudenur C, et al. End⁃of⁃life evaluation and biodegradation of Poly (lactic acid)(PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions[J]. Chemosphere, 2020, 247: 125875. |
66 | Richert A, Dąbrowska G B. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments[J]. International Journal of Biological Macromolecules, 2021, 176: 226⁃232. |
67 | Tokiwa Y, Calabia B P, Ugwu C U, et al. Biodegradability of plastics[J]. International Journal of Molecular Sciences, 2009, 10(9): 3 722⁃3 742. |
68 | Chan C M, Vandi L J, Pratt S, et al. Insights into the biodegradation of PHA/wood composites: Micro⁃and macroscopic changes[J]. Sustainable Materials and Technologies, 2019, 21: e00099. |
69 | Surya I, Hazwan C M, Abdul Khalil H P S, et al. Hydrophobicity and biodegradability of silane⁃treated nanocellulose in biopolymer for high⁃grade packaging applications[J]. Polymers, 2022, 14(19): 4 147. |
70 | Tang T O, Simon G P. Biodegradation of 3D⁃printed polylactic acid milliprojections under physiological conditions[J]. Journal of Applied Polymer Science, 2020, 137(38): 49129. |
71 | Elahi A, Bukhari D A, Shamim S, et al. Plastics degradation by microbes: a sustainable approach[J]. Journal of King Saud University⁃Science, 2021, 33(6): 101538. |
[1] | 邓子轩, 高策, 石思远, 宋欣声, 苏钲皓, 王晓珂, 马劲松, 张信, 侯连龙. 低碳环保型育苗容器的研究进展[J]. 中国塑料, 2022, 36(12): 108-120. |
[2] | 李美兰, 何娇, 龚伟, 贺肖妮, 来倩, 刘白玲. 无磷型绿色端羧基超支化聚酯的制备及其阻垢行为研究[J]. 中国塑料, 2021, 35(11): 55-63. |
[3] | 赵磊, 姜为青, 刘华, 李桂付, 周红涛. 生物可降解山麻杆韧皮纤维增强PBS复合材料的性能研究[J]. 中国塑料, 2019, 33(12): 73-79. |
[4] | 姚志光, 吕庆丹, 胡艳华. 聚ε-己内酯/二氧化硅纳米复合材料的制备与性能研究[J]. 中国塑料, 2017, 31(06): 65-70 . |
[5] | 余巧玲, 王万卷, 刘志健, 容腾, 徐运祺. 生物基塑料中3种14C含量检测方法的对比[J]. 中国塑料, 2016, 30(07): 1-6 . |
[6] | 杨冰, 张自强, 张以河, 季君晖, 许颖, 蒋丹. PBAT/PLA薄膜的制备及性能研究[J]. 中国塑料, 2015, 29(03): 45-50 . |
[7] | 彭李超, 柴 云, 刘 洋, 张普玉. 可完全生物降解的聚乳酸共混体系研究进展[J]. 中国塑料, 2008, 22(11): 1-8 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||