
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (4): 103-108.DOI: 10.19491/j.issn.1001-9278.2024.04.017
• 综述 • 上一篇
程恩1(), 叶冬蕾2, 程德宝3, 田华峰1, 赵晓颖1, 项爱民1(
)
收稿日期:
2024-01-18
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
项爱民(1967-),女,教授,研究方向为水溶性高分子,xaming@th.btbu.edu.cn作者简介:
程恩(1996-),男,硕士研究生,研究方向为可食用纳米纤维,ench456@163.com
CHENG En1(), YE Donglei2, CHENG Debao3, TIAN Huafeng1, ZHAO Xiaoying1, XIANG Aimin1(
)
Received:
2024-01-18
Online:
2024-04-26
Published:
2024-04-22
Contact:
XIANG Aimin
E-mail:ench456@163.com;xaming@th.btbu.edu.cn
摘要:
介绍了溶液的黏度、电导率、表面张力和溶剂的挥发性等对静电纺丝制备纳米纤维薄膜的影响,静电纺丝技术的分类,以及采用可降解的明胶等物质通过静电纺丝技术制备明胶基纳米纤维薄膜,综述了静电纺丝明胶基纳米纤维薄膜在可食用薄膜、抗菌抗氧化薄膜、组织工程、纳米纤维敷料和过滤等方面的应用。
中图分类号:
程恩, 叶冬蕾, 程德宝, 田华峰, 赵晓颖, 项爱民. 明胶基静电纺丝纳米纤维及其应用[J]. 中国塑料, 2024, 38(4): 103-108.
CHENG En, YE Donglei, CHENG Debao, TIAN Huafeng, ZHAO Xiaoying, XIANG Aimin. Gelatin⁃based electrospun nanofibers and their applications[J]. China Plastics, 2024, 38(4): 103-108.
1 | Zhang Y, Yang L, Dong Q, et al. Fabrication of antibacterial fibrous films by electrospinning and their application for Japanese sea bass (Lateolabrax japonicus) preservation[J]. LWT, 2021, 149: 111870. |
2 | Liu X, Song X, Gou D, et al. A polylactide based multifunctional hydrophobic film for tracking evaluation and maintaining beef freshness by an electrospinning technique[J]. Food Chemistry, 2023, 428: 136784. |
3 | Qin M, Mou X J, Dong W H, et al. In situ electrospinning wound healing films composed of zein and clove essential oil[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900790. |
4 | Wang P, Li Y, Zhang C, et al. Characterization and antioxidant activity of trilayer gelatin/dextran⁃propyl gallate/gelatin films: Electrospinning versus solvent casting[J]. Lwt, 2020, 128: 109536 |
5 | Liu X, Shi M, Luo Y, et al. Degradable and dissolvable thin⁃film materials for the applications of new⁃generation environmental⁃friendly electronic devices[J]. Applied Sciences, 2020, 10(4): 1 320. |
6 | Ashraf R, Sofi H S, Malik A, et al. Recent trends in the fabrication of starch nanofibers: electrospinning and non⁃electrospinning routes and their applications in biotechnology[J]. Applied Biochemistry and Biotechnology, 2019, 187: 47⁃74. |
7 | Pant B, Park M, Park S J. Drug delivery applications of core⁃sheath nanofibers prepared by coaxial electrospinning: a review[J]. Pharmaceutics, 2019, 11(7): 305. |
8 | Lee J, Moon S, Lahann J, et al. Recent Progress in Preparing Nonwoven Nanofibers via Needleless Electrospinning[J]. Macromolecular Materials and Engineering, 2023: 2300057. |
9 | Partheniadis I, Stathakis G, Tsalavouti D, et al. Essential oil⁃loaded nanofibers for pharmaceutical and biomedical applications: a systematic mini⁃review[J]. Pharmaceutics, 2022, 14(9): 1 799. |
10 | Zare M, Dziemidowicz K, Williams G R, et al. Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes[J]. Nanomaterials, 2021, 11(8): 1 968. |
11 | Tang Y, Zhou Y, Lan X, et al. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2 227⁃2 234. |
12 | Mohajeri P, Hematian Sourki A, Mehregan Nikoo A, et al. Fabrication, characterisation and antimicrobial activity of electrospun Plantago psyllium L. seed gum/gelatine nanofibres incorporated with Cuminum cyminum essential oil nanoemulsion[J]. International Journal of Food Science & Technology, 2023, 58(4): 1 832⁃1 840. |
13 | Wu J, Liu S, Zhang M, et al. Coaxial electrospinning preparation and antibacterial property of polylactic acid/tea polyphenol nanofiber membrane[J]. Journal of Industrial Textiles, 2022, 51(): 1778S-1792S. |
14 | Liu L, Tao L, Chen J, et al. Fish oil⁃gelatin core⁃shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients[J]. Lwt, 2021, 146: 111500. |
15 | Saadat S, Emam⁃Djomeh Z, Askari G. Antibacterial and antioxidant gelatin nanofiber scaffold containing ethanol extract of pomegranate peel: design, characterization and in vitro assay[J]. Food and Bioprocess Technology, 2021, 14: 935⁃944. |
16 | Li S, Shi W, Wang X, et al. Electrospinning of gelatin nanofibers containing sesamol nanoparticles[J]. The Journal of The Textile Institute, 2023: 1⁃9. |
17 | Ali M G, Mousa H M, Blaudez F, et al. Dual nanofiber scaffolds composed of polyurethane⁃gelatin/nylon 6⁃gelatin for bone tissue engineering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124817. |
18 | Ji X, Guo J, Guan F, et al. Preparation of electrospun polyvinyl alcohol/nanocellulose composite film and evaluation of its biomedical performance[J]. Gels, 2021, 7(4): 223. |
19 | Jhang J C, Lin J H, Lou C W, et al. Biodegradable and conductive PVA/CNT nanofibrous membranes used in nerve conduit applications[J]. Journal of Industrial Textiles, 2022, 51(): 1048S-1065S. |
20 | Khalafi N, Gharachorloo M, Ganjloo A, et al. Electrospun zein nanofibers containing anthocyanins extracted from red cabbage (Brassica oleracea L.)[J]. Journal of Food Science, 2023, 88(11): 4 620⁃4 629. |
21 | Altan A, Çayır Ö. Encapsulation of carvacrol into ultrafine fibrous zein films via electrospinning for active packaging[J]. Food Packaging and Shelf Life, 2020, 26: 100581. |
22 | Nuge T, Tshai K Y, Lim S S, et al. Characterization and optimization of the mechanical properties of electrospun gelatin nanofibrous scaffolds[J]. World Journal of Engineering, 2020, 17(1): 12⁃20. |
23 | Angammana C J, Jayaram S H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1 109⁃1 117. |
24 | Fukushima S, Karube Y, Kawakami H. Preparation of ultrafine uniform electrospun polyimide nanofiber[J]. Polymer Journal, 2010, 42(6): 514⁃518. |
25 | Rezaei B, Shoushtari A M, Rabiee M, et al. Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers[J]. Advances in Polymer Technology, 2018, 37(8): 2 743⁃2 755. |
26 | Zhao J, Sun Z, Shao Z, et al. Effect of surface⁃active agent on morphology and properties of electrospun PVA nanofibres[J]. Fibers and Polymers, 2016, 17(6): 896⁃901. |
27 | Hu J, Prabhakaran M P, Ding X, et al. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties[J]. Journal of Biomaterials Science, polymer edition, 2015, 26(1): 57⁃75. |
28 | Bonino C A, Krebs M D, Saquing C D, et al. Electrospinning alginate⁃based nanofibers: From blends to crosslinked low molecular weight alginate⁃only systems[J]. Carbohydrate Polymers, 2011, 85(1): 111⁃119. |
29 | Otsuka I, Barrett C J. Electrospinning of photo⁃responsive azo⁃cellulose: towards smart fibrous materials[J]. Cellulose, 2019, 26: 6 903⁃6 915. |
30 | Fashandi H, Karimi M. Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere[J]. Polymer, 2012, 53(25): 5 832⁃5 849. |
31 | Celebioglu A, Uyar T. Electrospun porous cellulose acetate fibers from volatile solvent mixture[J]. Materials Letters, 2011, 65(14): 2 291⁃2 294. |
32 | Wang Q, Liu S, Lu W, et al. Fabrication of Curcumin@ Ag loaded core/shell nanofiber membrane and its synergistic antibacterial properties[J]. Frontiers in Chemistry, 2022, 10: 870666. |
33 | Li S F, Wu J H, Hu T G, et al. Encapsulation of quercetin into zein⁃ethyl cellulose coaxial nanofibers: Preparation, characterization and its anticancer activity[J]. International Journal of Biological Macromolecules, 2023, 248: 125797. |
34 | Liu Y, Chen X, Gao Y, et al. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres[J]. Journal of Nanobiotechnology, 2022, 20(1): 244. |
35 | Chen J, Yu Z, Li C, et al. Review of the principles, devices, parameters, and applications for centrifugal electrospinning[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200057. |
36 | Ebrahimi S, Fathi M, Kadivar M. Production and characterization of chitosan⁃gelatin nanofibers by nozzle⁃less electrospinning and their application to enhance edible film’s properties[J]. Food Packaging and Shelf Life, 2019, 22: 100387. |
37 | Ricaurte L, Tello⁃Camacho E, Quintanilla⁃Carvajal M X. Hydrolysed gelatin⁃derived, solvent⁃free, electrospun nanofibres for edible applications: physical, chemical and thermal behaviour[J]. Food Biophysics, 2020, 15: 133⁃142. |
38 | Li M, Yu H, Xie Y, et al. Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material[J]. LWT,2021,139:110 800. |
39 | Shi Y, Cao X, Zhu Z, et al. Fabrication of cellulose acetate/gelatin⁃eugenol core–shell structured nanofiber films for active packaging materials[J]. Colloids and Surfaces B: Biointerfaces, 2022, 218: 112743. |
40 | Liu Y, Wang D, Sun Z, et al. Preparation and characterization of gelatin/chitosan/3⁃phenylacetic acid food⁃packaging nanofiber antibacterial films by electrospinning[J]. International Journal of Biological Macromolecules, 2021, 169: 161⁃170. |
41 | Huang Z, Wang W, Wang Q, et al. Coaxial nanofiber scaffold with super⁃active platelet lysate to accelerate the repair of bone defects[J]. RSC Advances, 2020, 10(59): 35 776⁃35 786. |
42 | Irani S, Honarpardaz A, Choubini N, et al. Chondro‐inductive nanofibrous scaffold based gelatin/polyvinyl alcohol/chondroitin sulfate for cartilage tissue engineering[J]. Polymers for Advanced Technologies, 2020, 31(6): 1 395⁃1 402. |
43 | Farahani H, Barati A, Arjomandzadegan M, et al. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora[J]. International Journal of Biological Macromolecules, 2020, 162: 762⁃773. |
44 | Mirbehbahani F S, Hejazi F, Najmoddin N, et al. Artemisia annua L. as a promising medicinal plant for powerful wound healing applications[J]. Progress in Biomaterials, 2020, 9: 139⁃151. |
45 | Golipour H, Ezzatzadeh E, Sadeghianmaryan A. Investigation of co‐electrospun gelatin: TiO2/polycaprolactone: silk fibroin scaffolds for wound healing applications[J]. Journal of Applied Polymer Science, 2022, 139(27): e52505. |
46 | You Y, Chen F, Qian J, et al. Nonhazardous electrospun biopolymer nanofibrous membrane for antibacterial filter[J]. Nano, 2020, 15(7): 2050085. |
47 | Baburaj M S, Veeran M G, Painuly D, et al. Fabrication and characterisation of polycaprolactone/gelatin/chitosan (PCL/GEL/CHI) electrospun nano⁃membranes for wastewater purification[J]. Desalination, 2023: 116709. |
48 | Kadam V, Truong Y B, Schutz J, et al. Gelatin/β–Cyclodextrin Bio–Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance[J]. Journal of Hazardous Materials, 2021, 403: 123841. |
[1] | 李杰, 路祎祎, 石文天, 郭云杰, 王宇科. PDMS/PVDF静电纺丝膜的制备及油水分离性能研究[J]. 中国塑料, 2024, 38(1): 28-34. |
[2] | 王玉伟, 肖润祥, 张宏凯, 官文瑾, 邓亚峰. 纳米纤维基空气过滤材料的研究进展[J]. 中国塑料, 2023, 37(9): 115-124. |
[3] | 关国涛, 刘晨泽, 何世权, 宋超洋, 张响, 赵娜, 王超. 抗菌可降解聚乳酸薄膜制备与性能测试[J]. 中国塑料, 2023, 37(9): 8-13. |
[4] | 周磊, 张礼华, 陈景铭, 毛旭, 陈曙光, 邱建成. 可降解塑料片材机头流道的流场分析及设计优化[J]. 中国塑料, 2023, 37(9): 90-95. |
[5] | 王容容, 江涛, 孙少阳, 周洲, 汪翔, 申莹, 邢剑. 聚酰亚胺/多壁碳纳米管杂化纳米纤维的制备与性能研究[J]. 中国塑料, 2023, 37(12): 23-28. |
[6] | 李好义, 王逸铭, 丁熙, 张毅, 白静雨, 李斐菲, 张跃勇, 杨卫民. 静电纺药物负载与应用研究进展[J]. 中国塑料, 2023, 37(12): 60-69. |
[7] | 王容容 江涛 孙少阳 周洲 汪翔 申莹 邢剑. 聚酰亚胺/多壁碳纳米管杂化纳米纤维的制备与性能研究[J]. , 2023, 37(12): 23-28. |
[8] | 杨天学, 杨哲, 张军平, 王铭, 龚天成, 张婷, 侯佳奇, 席北斗. 国内外可降解膜研究热点及趋势对比分析[J]. 中国塑料, 2023, 37(1): 119-132. |
[9] | 林健辉, 卢嘉慧, 吴欣颖, 范雪滢, 邓桂荣, 高亮, 梅承芳, 杨永刚. 受控堆肥条件下可降解材料最终需氧生物分解能力测定的不确定度评定研究[J]. 中国塑料, 2022, 36(9): 140-147. |
[10] | 杜青, 何祎, 余坦竟, 蓝艳姣, 赵彦芝, 周菊英. 取向PAN/MWCNTs与热塑性聚烯烃复合材料的制备及表征[J]. 中国塑料, 2022, 36(8): 49-55. |
[11] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[12] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[13] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[14] | 冀峰, 龚炜华, 张艳, 罗水源, 于庆雨, 朱君秋, 郭江彬. 超临界二氧化碳釜压发泡法制备生物可降解PBAT发泡颗粒[J]. 中国塑料, 2022, 36(5): 122-126. |
[15] | 魏辽. 水溶性高分子材料在油气田压裂中的应用研究进展[J]. 中国塑料, 2022, 36(5): 149-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||