
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (8): 125-131.DOI: 10.19491/j.issn.1001-9278.2024.08.020
• 综述 • 上一篇
唐波1, 相利学1, 代旭明1, 王二轲1, 姜涛2, 王瑛2, 吴新锋1,3()
收稿日期:
2023-12-05
出版日期:
2024-08-26
发布日期:
2024-08-19
通讯作者:
吴新锋(1982—),男,教授,从事导热复合材料的制备及其性能研究,xfwu@sspu.edu.cn基金资助:
TANG Bo1, XIANG Lixue1, DAI Xumin1, WANG Erke1, JIANG Tao2, WANG Ying2, WU Xinfeng1,3()
Received:
2023-12-05
Online:
2024-08-26
Published:
2024-08-19
Contact:
WU Xinfeng
E-mail:xfwu@sspu.edu.cn
摘要:
总结了制备金刚石导热复合材料的主流方式,并介绍了每一种制备方法的制备过程、导热机理等,包括共混法、构筑模板法、电沉积技术、烧结技术、磁控溅射技术、化学气相沉积技术等,概述了不同制备方式的成型过程并归纳和归纳了其导热性能。最后,对金刚石导热复合材料研究进行了总结和展望。
中图分类号:
唐波, 相利学, 代旭明, 王二轲, 姜涛, 王瑛, 吴新锋. 金刚石导热复合材料的研究进展[J]. 中国塑料, 2024, 38(8): 125-131.
TANG Bo, XIANG Lixue, DAI Xumin, WANG Erke, JIANG Tao, WANG Ying, WU Xinfeng. Research progress in diamond thermally conductive composite material[J]. China Plastics, 2024, 38(8): 125-131.
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
环氧树脂/金刚石/ 氮化硼 | 金刚石(12 %);氮化硼(7 %) | 2.72 | [ |
碳化硅/金刚石 | 金刚石(26 %) | 298 | [ |
环氧树脂/纳米金刚石 | 纳米金刚石(4.63 %) | 1.27 | [ |
石蜡/金刚石泡沫 | 金刚石(1.3 %) | 6.7 | [ |
铝/金刚石 | 金刚石(4.6 %) | 315.7 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
环氧树脂/金刚石/ 氮化硼 | 金刚石(12 %);氮化硼(7 %) | 2.72 | [ |
碳化硅/金刚石 | 金刚石(26 %) | 298 | [ |
环氧树脂/纳米金刚石 | 纳米金刚石(4.63 %) | 1.27 | [ |
石蜡/金刚石泡沫 | 金刚石(1.3 %) | 6.7 | [ |
铝/金刚石 | 金刚石(4.6 %) | 315.7 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
碳化钛/金刚石/铜 | 金刚石(68.2 %) | 454 | [ |
铜/碳化硅包裹纳米金刚石 | 金刚石(2.72 %) | 46 | [ |
铜/400 μm金刚石 | 金刚石(60.6 %) | 847 | [ |
铜/230 μm金刚石 | 金刚石(49 %) | 600 | [ |
铜/氨基化微米金刚石 | 金刚石(20.3 %) | 595 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
碳化钛/金刚石/铜 | 金刚石(68.2 %) | 454 | [ |
铜/碳化硅包裹纳米金刚石 | 金刚石(2.72 %) | 46 | [ |
铜/400 μm金刚石 | 金刚石(60.6 %) | 847 | [ |
铜/230 μm金刚石 | 金刚石(49 %) | 600 | [ |
铜/氨基化微米金刚石 | 金刚石(20.3 %) | 595 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
Si3N4/金刚石 | 金刚石(50 %) | 202 | [ |
银⁃钛/金刚石 | 金刚石/银(60 %);钛(1.5 %) | 953 | [ |
铜/金刚石 | 金刚石(60 %) | 564 | [ |
铜/镀钨金刚石 | 金刚石(60 %) | 874 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
Si3N4/金刚石 | 金刚石(50 %) | 202 | [ |
银⁃钛/金刚石 | 金刚石/银(60 %);钛(1.5 %) | 953 | [ |
铜/金刚石 | 金刚石(60 %) | 564 | [ |
铜/镀钨金刚石 | 金刚石(60 %) | 874 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
铝/钨沉积金刚石 | 金刚石(55 %) | 622 | [ |
铜/钨沉积金刚石 | 金刚石(65 %) | 796 | [ |
铜/铜⁃碳化钼包裹金刚石 | 金刚石(60 %) | 351 | [ |
镓基/铬沉积金刚石 | 金刚石(47 %) | 113 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
铝/钨沉积金刚石 | 金刚石(55 %) | 622 | [ |
铜/钨沉积金刚石 | 金刚石(65 %) | 796 | [ |
铜/铜⁃碳化钼包裹金刚石 | 金刚石(60 %) | 351 | [ |
镓基/铬沉积金刚石 | 金刚石(47 %) | 113 | [ |
制备方法 | 优势 | 缺陷 | 性能 |
---|---|---|---|
共混法 | 制备简单;原材料选择灵活;生产成本相对较低 | 界面质量不易控制;无法实现定向结构 | 高含量填料才能达到较高热导率 |
构筑模板法 | 定向结构;高质量界面;适用于多种尺度 | 制备工艺复杂;工业化生产较难 | 较低含量填料能实现较高的热导率 |
电沉积技术 | 普适性较强;低温制备;成本较低 | 表面处理较高;有限的沉积速率;附着力较差 | 厚沉积涂层可以实现高热导率 |
烧结技术 | 成型灵活且步骤简单 | 高成本;能源消耗较大;会引发颗粒的变形 | 高稳定性;高含量填料达到较高热导率 |
磁控溅射技术 | 均匀沉积;适用于多种基体 | 基材处理要求高;设备复杂度高;成本较高;膜层可能会产生微裂缝 | 附着力较好;厚沉积涂层可以实现高热导率 |
化学气相沉积技术 | 高纯度;均匀性好;可实现复杂结构制备 | 设备复杂;成本较高 | 附着力较好;热稳定性好;厚沉积涂层可以实现高热导率 |
制备方法 | 优势 | 缺陷 | 性能 |
---|---|---|---|
共混法 | 制备简单;原材料选择灵活;生产成本相对较低 | 界面质量不易控制;无法实现定向结构 | 高含量填料才能达到较高热导率 |
构筑模板法 | 定向结构;高质量界面;适用于多种尺度 | 制备工艺复杂;工业化生产较难 | 较低含量填料能实现较高的热导率 |
电沉积技术 | 普适性较强;低温制备;成本较低 | 表面处理较高;有限的沉积速率;附着力较差 | 厚沉积涂层可以实现高热导率 |
烧结技术 | 成型灵活且步骤简单 | 高成本;能源消耗较大;会引发颗粒的变形 | 高稳定性;高含量填料达到较高热导率 |
磁控溅射技术 | 均匀沉积;适用于多种基体 | 基材处理要求高;设备复杂度高;成本较高;膜层可能会产生微裂缝 | 附着力较好;厚沉积涂层可以实现高热导率 |
化学气相沉积技术 | 高纯度;均匀性好;可实现复杂结构制备 | 设备复杂;成本较高 | 附着力较好;热稳定性好;厚沉积涂层可以实现高热导率 |
1 | Chen Hongyun, Xiang Wang, Dong Xiaoyan, et al. Adjusting the energy⁃storage characteristics of 0.95NaNbO3⁃0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials[J]. ACS Applied Materials & Interfaces, 2022, 14 (22):25 609⁃25 619. |
2 | 肖琰,魏伯荣,杨海涛,等.导热高分子材料的研究开发现状[J].中国塑料,2005(04):12⁃16. |
XIAO Y, WEI B R, YANG H T,et al. Current status of research and development of thermally conductive polymer materials[J]. China Plastics, 2005(04):12⁃16. | |
3 | Santosh Kumar Sahoo, Mihir Kumar Das, Rath Prasenjit. Application of TCE⁃PCM based heat sinks for cooling of electronic components: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59:550⁃582. |
4 | Zhou Lianggong, Liu Jianan, Ding Ruiqing, et al. A review of diamond interfacial modification and its effect on the properties of diamond/Cu matrix composites[J]. Surfaces and Interfaces, 2023, 40:103143. |
5 | Zhu P, Wang P, Shao P, et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites[J]. Int J Miner Metall Mater, 2022, 29:200⁃211. |
6 | Li Zhang, Hua Deng, Qiang Fu. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications, 2018, 8:74⁃82. |
7 | Bhoi N K, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles⁃A review[J]. Journal of Composite Materials, 2020, 54(6):813⁃833. |
8 | Ning Li, Zhang Yongjian, Yang Zhang, et al. Realizing ultrahigh thermal conductivity in bimodal⁃diamond/Al composites via interface engineering[J]. Materials Today Physics, 2022, 28:100901. |
9 | Liu Weina, Naydenov Boris, Chakrabortty Sabyasachi, et al. Fluorescent nanodiamond⁃gold hybrid particles for multimodal optical and electron microscopy cellular imaging[J]. Nano Letters, 2016, 16(10) :6 236⁃6 244. |
10 | Inyushkin A V, Taldenkov A N, Yelisseyev A P, et al. Thermal conductivity of type⁃Ib HPHT synthetic diamond irradiated with electrons[J]. Diamond and Related Materials, 2023, 139:110302. |
11 | Liu Yiling, Lin Qiu, Liu Jinlong, et al. Enhancing thermal transport across diamond/graphene heterostructure interface[J]. International Journal of Heat and Mass Transfer, 2023, 209:124123. |
12 | Xie Zhongnan, Hong Guo, Zhen Zhang, et al. Thermal expansion behaviour and dimensional stability of Diamond/Cu composites with different diamond content[J]. Journal of Alloys and Compounds, 2019, 797:122⁃130. |
13 | Zhao Y, Yan F, Liu X, et al. Thermal transport properties of diamond phonons by electric field[[J]. Nanomaterials, 2022, 12(19):3399. |
14 | Dong Huicong, Wen Bin, Yuwen Zhang, et al. Thermal conductivity of diamond/SiC nano⁃polycrystalline composites and phonon scattering at interfaces[J]. ACS Omega, 2017, 2 (5) :2 344⁃2 350. |
15 | 杨碧环,李东皓,祝捷,等.缺陷增强铜/金刚石界面热导的分子动力学研究[J].工程热物理学报,2023,44(03):781⁃786. |
YANG B H, LI D H, ZHU J, et al. Molecular dynamics study of thermal conductivity at defect⁃enhanced copper/diamond interfaces[J]. Journal of Engineering Thermophysics, 2023, 44(03):781⁃786. | |
16 | Cao Zhenya, Chen Shuai, Jiang Zhizhong, et al. Effect of Si⁃coated diamond on the relative density and thermal conductivity of diamond/W composites prepared by SPS[J]. Vacuum, 2023, 209:111728. |
17 | Jia S Q, Yang F. High thermal conductive copper/diamond composites: state of the art[J]. J Mater Sci, 2021, 56:2 241⁃2 274. |
18 | Zhao B, Jiang G. Thermal conductive epoxy enhanced by nanodiamond⁃coated carbon nanotubes[J]. Electron Mater Lett, 2017, 13:512⁃517. |
19 | Zeng Chengzong, Ma Chaofan, Shen Jun. High thermal conductivity in diamond induced carbon fiber⁃liquid metal mixtures[J]. Composites Part B: Engineering, 2022, 238:109902. |
20 | Du Xinxin, Yang Wulin, Zhu Jiajun, et al. Aligning diamond particles inside BN honeycomb for significantly improving thermal conductivity of epoxy composite[J]. Composites Science and Technology, 2022, 222:109370. |
21 | Liu Pengfei, He Xinbo, Qu Xuanhui. Preparation of high thermal conductivity diamond/SiC composites with 3D connected diamond at low volume fraction[J]. Composites Communications, 2023, 39:101526. |
22 | Yoshitomi Tomohiro, Matsumoto Takuya, Nishino Takashi. Highly thermally conductive nanocomposites prepared by the ice⁃templating alignment of nanodiamonds in the thickness direction[J]. ACS Applied Polymer Materials, 2023, 5(10) :8 349⁃8 358. |
23 | Long Zhang, Zhou Kechao, Wei Quiping, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J].Applied Energy, 2019, 233:208⁃219. |
24 | Long Zhang, Wei Qiuping, An Junjie, et al. Construction of 3D interconnected diamond networks in Al⁃matrix composite for high⁃efficiency thermal management[J]. Chemical Engineering Journal, 2020, 380:122551. |
25 | Jun Cho Hai, Kim Young⁃June, Erb Uwe. Thermal conductivity of copper⁃diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites Part B: Engineering, 2018, 155:197⁃203. |
26 | Hagio Takeshi, Park Jae⁃Hyeok, Naruse Yuto, et al. Electrodeposition of nano⁃diamond/copper composite platings: Improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface[J]. Surface and Coatings Technology, 2020, 403: 126322. |
27 | Wu Yongpeng, Luo Jiangbo, Yan Wang, et al. Critical effect and enhanced thermal conductivity of Cu⁃diamond composites reinforced with various diamond prepared by composite electroplating[J]. Ceramics International, 2019, 10(45) :13 225⁃13 234. |
28 | Arai S, Ueda M. Fabrication of high thermal conductivity copper/diamond composites by electrodeposition under potentiostatic conditions[J]. J Appl Electrochem, 2020, 50:631⁃638. |
29 | Ishida Naoya, Kato Kazuki, Suzuki Norihiro, et al. Preparation of amino group functionalized diamond using photocatalyst and thermal conductivity of diamond/copper composite by electroplating[J]. Diamond and Related Materials, 2021, 118:108509. |
30 | Wu Dandan, Wang Chengyong, Hu Xiaoyue, et al. Fabrication and characterization of highly thermal conductive Si3N4/diamond composite materials[J]. Materials & Design, 2023, 225:111482. |
31 | Jhong Yu⁃Siang, Tseng Hsiao⁃Ting, Lin Su⁃Jien. Diamond/Ag⁃Ti composites with high thermal conductivity and excellent thermal cycling performance fabricated by pressureless sintering[J]. Journal of Alloys and Compounds, 2019, 801:589⁃595. |
32 | Lu Kaijie, Wang Chunju, Wang Changrui, et al. Study of the hot⁃pressing sintering process of diamond/copper composites and their thermal conductivity[J]. Journal of Alloys and Compounds, 2023, 960:170608. |
33 | Wang X, He X, Xu Z, et al. Preparation of W⁃plated diamond and improvement of thermal conductivity of diamond⁃WC⁃Cu composite[J]. Metals, 2021, 11(3):437. |
34 | Liu Xiaoyan, Sun Fangyuan, Wang Luhua, et al. The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond[J]. Applied Surface Science, 2020, 515:146046. |
35 | Yang Wenshu, Chen Guoqin, Wang Pingping, et al. Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. Journal of Alloys and Compounds, 2017, 726:623⁃631. |
36 | Jia Jinhao, Bai Shuxin, Xiong Degan, et al. Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. Materials Chemistry and Physics, 2020, 252:123422. |
37 | Liu Ruxia, Luo Guoqiang, Yuan Li, et al. Microstructure and thermal properties of diamond/copper composites with Mo2C in⁃situ nano⁃coating[J]. Surface and Coatings Technology, 2019, 360:376⁃381. |
38 | Wei S, Yu Z F, Zhou L J, et al. Investigation on enhancing the thermal conductance of gallium⁃based thermal interface materials using chromium⁃coated diamond particles[J]. J Mater Sci: Mater Electron, 2019, 30:7 194⁃7 120. |
39 | Jiao Zengkai, Li Songbo, Zhou Kechao, et al. Application of multi⁃scale pore regulation for high thermal conductivity foam reinforcements in energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157:106938. |
40 | Ye Wentao, Wei Qiuping, Long Zhang, et al. Macroporous diamond foam: A novel design of 3D interconnected heat conduction network for thermal management[J]. Materials & Design, 2018, 156:32⁃41. |
[1] | 纪建超, 颜悦, 陈宇宏, 哈恩华, 郝常山, 雷沛. 在PMMA上低温沉积TiO2薄膜的光学性能及显微结构[J]. 中国塑料, 2024, 38(3): 7-12. |
[2] | 张之琪, 李润焘, 杨瑞程, 代云良, 章晓娟, 温变英. 片状FeSiAl/Al2O3共填充聚偏氟乙烯复合材料的吸波导热性能研究[J]. 中国塑料, 2023, 37(9): 44-50. |
[3] | 何明峰, 王珂, 王启扬, 杨肖, 郭红, 胡泊洋, 李保安. 聚偏氟乙烯/类基体基团修饰石墨烯导热复合材料研究[J]. 中国塑料, 2022, 36(2): 41-48. |
[4] | 王启扬, 杨肖, 陈吉奂, 何悦星, 杨冬梅, 胡泊洋, 郭红, 李保安. 双隔离结构聚乙烯/石墨烯导热复合材料的研究[J]. 中国塑料, 2022, 36(1): 32-41. |
[5] | 陈逸镕, 赖金娣, 莫艺桦, 邓井溢, 徐子威, 张婧婧. 共混顺序对石墨烯微片在PP/PA6/SEBS共混物中的选择性分布和迁移的影响[J]. 中国塑料, 2021, 35(1): 31-36. |
[6] | 徐子威 黄诗君 张婧婧 秦国锋 蒋培松. 拉伸力场对聚丙烯/石墨烯微片纳米复合材料形态和性能的影响[J]. 中国塑料, 2019, 33(8): 56-62. |
[7] | 余浩斌 张婧婧 何穗华 杨涛. 石墨烯微片的尺寸和形态对聚丙烯基纳米复合材料导电导热性能的影响[J]. 中国塑料, 2018, 32(03): 51-58. |
[8] | 吕朋荣, 张婧婧, 陈宇强, 张鹏. 剪切对聚丙烯/石墨烯微片纳米复合材料形态和性能的影响[J]. 中国塑料, 2016, 30(06): 45-51 . |
[9] | 陶国良, 魏晓东, 夏艳平, 帅骥, 林惜晨. PBT/石墨烯微片复合材料的导热性能和力学性能[J]. 中国塑料, 2016, 30(05): 55-59 . |
[10] | 王鹏, 黄伟, 陈历波, 常明强, 付晓蓉. BN填充PA6基导热绝缘复合材料导热性能研究[J]. 中国塑料, 2015, 29(03): 21-25 . |
[11] | 吴宏武 徐晓强 刘汉. 膨胀石墨混杂填充聚丙烯复合材料导热性能研究[J]. 中国塑料, 2013, 27(03): 96-99 . |
[12] | 焦迎春 沈同德 梁沁 章轶. 碳纳米管增强聚甲基丙烯酸甲酯复合材料的研究进展[J]. 中国塑料, 2012, 26(10): 16-23 . |
[13] | 李珺鹏 齐暑华 曹鹏 谢璠. 不同粒径氮化硼填充环氧树脂/玻璃纤维绝缘导热复合材料的研究[J]. 中国塑料, 2011, 25(06): 38-41 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||