1 |
CHRISTIAN M, WOLFGANG R, TIM A O. Melt Conveying in Single⁃Screw Extruders: Modeling and Simulation[J]. Polymers,2022,14(5):875⁃875.
|
2 |
黄志刚,李梦林,闫 梅,等. 单螺杆挤出机螺杆模态分析及其优化设计[J]. 山东化工,2016,45(3):98⁃101.
|
|
HUANG Z G, LI M L, YAN M, et al. The modal analysis and optimization design of single screw extruder [J]. Shandong Chemical Industry,2016,45(3):98⁃101.
|
3 |
郑 彬,周林非. 单螺杆挤出机螺杆的结构设计与优化[J]. 塑料工业,2020,48(z1):93⁃96,124.
|
|
ZHENG B, ZHOU L F. Structure design and optimization for screw of single screw extruder[J]. China Plastics Industry,2020,48(z1):93⁃96,124.
|
4 |
李成宇,吕晓龙,吕柏源. 制备再生橡胶的单螺杆挤出机喂料段流场分析及结构参数优化[J]. 橡胶工业,2023,70(1):56⁃61.
|
|
LI C Y, LYU X L, LYU B Y. Flow field analysis and structural parameter optimization of feed section in single screw extruder for preparing reclaimed rubber[J]. China Rubber Industry,2023,70(1):56⁃61.
|
5 |
HUU⁃TAI T. Machine learning for structural engineering: A state⁃of⁃the⁃art review[J]. Structures,2022,38:448⁃491.
|
6 |
王 磊,赵 敏,翁云宣,等. 机器学习在聚乳酸加工及性能预测中的应用研究进展[J]. 中国塑料,2023,37(08):127⁃134.
|
|
WANG L, ZHAO M, WENG Y X, et al. Research progress in applications and performance prediction of machine learning in PLA processing[J]. China Plastics,2023,37(08):127⁃134.
|
7 |
PERERA Y S, LI J, KELLY A L, et al. Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learning[C]//2023 European Control Conference (ECC). Bucharest, Romania: IEEE, 2023: 1⁃6.
|
8 |
ROLAND W, MARSCHIK C, KOMMENDA M, et al. Predicting the Non⁃Linear Conveying Behavior in Single⁃Screw Extrusion: A Comparison of Various Data⁃Based Modeling Approaches used with CFD Simulations[J]. International Polymer Processing,2021,36(5):529⁃544.
|
9 |
ROLAND W, MARSCHIK C, KRIEGER M, et al. Symbolic regression models for predicting viscous dissipation of three⁃dimensional non⁃Newtonian flows in single⁃screw extruders[J]. Journal of Non⁃Newtonian Fluid Mechanics,2019,268:12⁃29.
|
10 |
MULRENNAN K, DONOVAN J, CREEDON L, et al. A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms[J]. Polymer Testing, 2018, 69: 462⁃469.
|
11 |
ENRICO B, MARCO S, GIOVANNI L. Using analytical and data⁃driven methods to develop a soft⁃sensor for flow rate monitoring in tube extrusion[J]. Procedia Computer Science,2023,217:114⁃125.
|
12 |
ANTÓNIO G, FRANCISCO M, JANUSZ S, et al. Artificial intelligence in single screw polymer extrusion: Learning from computational data[J]. Engineering Applications of Artificial Intelligence,2022,116:105397
|
13 |
GASPAR⁃CUNHA A, COSTA P, DELBEM A, et al. Evolutionary multi⁃objective optimization of extrusion barrier screws: data mining and decision making[J]. Polymers, 2023, 15(9): 2 212.
|
14 |
GASPAR‐CUNHA A, COVAS J. The plasticating sequence in barrier extrusion screws part I: Modeling[J]. Polymer Engineering Science,2014,54(8):1 791⁃1 803.
|
15 |
ANTÓNIO G, A J C, JANUSZ S. Optimization of Polymer Processing: A Review (Part I—Extrusion)[J]. Materials, 2022, 15(1): 384.
|
16 |
KAZMER D O, HUTSON L, HAZEN D. Machine learning and multi⁃objective optimization of industrial extrusion[C]//SPE ANTEC 2020. Online: Society of Plastics Engineers, 2021:538⁃544.
|
17 |
MARIA A G ROCHA ANA, MATOS MARINA A, FERNANDA P COSTA M, et al. Single Screw Extrusion Optimization Using the Tchebycheff Scalarization Method[C]//Computational Science and Its Applications ⁃ ICCSA 2020: 20th International Conference. Cagliari, Italy: Springer, 2020:664⁃679.
|
18 |
GUOFANG Z, MIN Z, YUXI J. Multi‐objective optimization of reactive extrusion by genetic algorithms[J]. Journal of Applied Polymer Science,2014,132(16):41862.
|
19 |
ZHANG S, ZHENG H, ZHANG Z, et al. Multi⁃objective optimization design of internal cooling structure of a sensor probe[J]. International Journal of Heat and Fluid Flow, 2024, 107: 109332.
|
20 |
ZHANG W, JIANG S, LI X, et al. Multi⁃objective optimization of concrete pumping S⁃pipe based on DEM and NSGA⁃II algorithm[J]. Powder Technology, 2024, 434: 119314.
|
21 |
朱复华 著. 螺杆设计及其理论基础[M]. 北京 轻工业出版社 1984:5.
|
22 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. CoRR,2014,arXiv:.
|
23 |
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper⁃parameter optimization[J]. Advances in neural information processing systems, 2011, 24: 2 546–2 554.
|
24 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA⁃II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182⁃197.
|