[1] |
Nejad M Z, Alamzadeh N, Hadi A. Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear clastic⁃fully plastic condition[J]. Composites Part B Engineering, 2018, 154:410⁃422.
|
[2] |
Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials[J]. Materials Science & Engineering A, 2003, 362(1/2):81⁃106.
|
[3] |
康泽天,周博,薛世峰. 功能梯度形状记忆合金复合梁的力学行为[J].复合材料学报, 2019, 36(08):1 901⁃1 910.
|
|
KANG Z T, ZHOU B, XUE S F, Mechanical behaviors of functionally graded shape memory alloy composite beam[J].Acta Materiae Compositae Sinica, 2019, 36(08):1 901⁃1 910.
|
[4] |
Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451⁃455.
|
[5] |
Lim H R, Kim H S, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15):1901924.
|
[6] |
Rugsaj R, Suvanjumrat C. Study of mechanical properties of 3D printed material for non⁃pneumatic tire spoke[J]. Key Engineering Materials, 2021, 880:97⁃102.
|
[7] |
Radhika N, Sam M. Tribological and wear performance of centrifuge cast functional graded copper⁃based composite at dry sliding conditions[J].Journal of Central South University, 2019, 26(11):2 961⁃2 973.
|
[8] |
Silva M, Pinho L S, Covas J A, et al. 3D printing of graphene⁃based polymeric nanocomposites for biomedical applications[J]. Functional Composite Materials,2021, 2(1):8⁃29.
|
[9] |
Xia M G, Liang C P, Hu R X, et al. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices[J]. Applied Physics Express, 2018, 11(5):051601.
|
[10] |
Liu H, Li M, Liu S, et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics[J]. Materials Horizons, 2020, 7(1):203⁃213.
|
[11] |
Zhou L Y, Fu J Z, Gao Q, et al. All⁃printed flexible and stretchable electronics with pressing or freezing activatable liquid⁃metal⁃silicone inks[J]. Advanced Functional Materials, 2020, 30(3):1906683.
|
[12] |
Garland A, Fadel G. Design and manufacturing functionally gradient material objects with an off the shelf three⁃dimensional printer: challenges and solutions[J]. Journal of Mechanical Design, 2015, 137(11):111407.
|
[13] |
Naserifar N, LeDuc P R, Fedder G K, Material gradients in stretchable substrates toward integrated electronic functionality[J]. Advanced Materials, 2016, 28(18):3 584⁃3 591.
|
[14] |
Bartlett N W, Toller M T, Overvelde J T B, et al. A 3D⁃printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244):161⁃165.
|
[15] |
Yang J C, Lee S, Ma B S, et al. Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes[J]. Science Advances, 2022, 8(22):3 863.
|
[16] |
宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7):30‐36.
|
|
SONG Y B, YANG J J, LI C M. Research on properties and manufacturing accuracy of PDMS/SiC functional gradient composites [J]. China Plastics, 2022, 36(7):30‐36.
|
[17] |
王洛唯, 杨建军, 朱嘉乐. 基于顶部加热与分步制造的PDMS/SiC功能梯度材料3D打印成形规律研究[J]. 中国塑料, 2023, 37(11):74⁃80.
|
|
WANG L W, YANG J J, ZHU J L. 3D printing formation law of PDMS/SiC functionally graded materials based on top heating and step⁃by⁃step forming[J]. China Plastics, 2023, 37(11):74⁃80.
|