
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (8): 162-171.DOI: 10.19491/j.issn.1001-9278.2021.08.023
周迎鑫1, 翁云宣1,2(), 张彩丽1,2, 刁晓倩1, 宋鑫宇1
收稿日期:
2021-03-19
出版日期:
2021-08-26
发布日期:
2021-08-27
ZHOU Yingxin1, WENG Yunxuan1,2(), ZHANG Caili1,2, DIAO Xiaoqian1, SONG Xinyu1
Received:
2021-03-19
Online:
2021-08-26
Published:
2021-08-27
Contact:
WENG Yunxuan
E-mail:wyxuan@th.btbu.edu.cn
摘要:
简要介绍了近几年来聚对苯二甲酸乙二醇酯(PET)的回收应用现状,以及国内外相关标准法规;重点综述了PET物理回收和化学回收技术的研究进展,并对不同回收技术的特点进行比较与分析,以期为今后PET相关回收研究提供参考。
中图分类号:
周迎鑫, 翁云宣, 张彩丽, 刁晓倩, 宋鑫宇. 聚对苯二甲酸乙二醇酯回收技术和标准现状[J]. 中国塑料, 2021, 35(8): 162-171.
ZHOU Yingxin, WENG Yunxuan, ZHANG Caili, DIAO Xiaoqian, SONG Xinyu. Review of Recovery Technology and Standard Status of Poly(ethylene terephthalate)[J]. China Plastics, 2021, 35(8): 162-171.
标准号 | 标准名称 | 类别 | 归口机构 |
---|---|---|---|
ISO 15270:2008 | 塑料 废弃塑料再生和回收指南 | 国际 | ISO/TC 61/ SC 14 |
ISO/TR 16218:2013 | 包装和环境 化学回收工艺 | 国际 | ISO/TC 122/SC 4 |
ISO/TR 17098:2013 | 包装材料回收 可能影响回收的物质和材料报告 | 国际 | |
ISO 18604:2013 | 包装和环境 材料循环再生 | 国际 | |
ISO 18605:2013 | 包装和环境 能量回收 | 国际 | |
ISO 18606:2013 | 包装和环境 有机循环回收 | 国际 | |
ISO 12418?1:2012 | 塑料 使用后的对苯二酸酯乙二醇酯(PET)瓶回收 第1部分:命名和规格 | 国际 | |
ISO 12418?2:2012 | 塑料 使用后的对苯二酸酯乙二醇酯(PET)瓶回收 第2部分: 试样的制备和性能测定 | 国际 | |
EN 15343:2007 | 塑料 再生塑料 塑料回收可追溯性及合规性评估 | 欧盟 | CEN/TC 249 |
EN 15247:2007 | 塑料 再生塑料 废弃塑料表征 | 欧盟 | |
CEN/TR 15353:2007 | 塑料 再生塑料 再生塑料指南 | 欧盟 | |
CEN/TS 16010:2013 | 塑料 再生塑料 废弃塑料和回收物试验取样 | 欧盟 | |
CEN/TS 16011:2013 | 塑料 再生塑料 样品制备 | 欧盟 | |
EN 13440:2004 | 包装 回收率 定义及计算方法 | 欧盟 | CEN/TC 261/SC4 |
EN 13437:2004 | 包装及材料回收 回收方法指标 回收工艺和流程图 | 欧盟 | |
CEN/TR 13688:2008 | 包装 材料回收 避免影响回收的物质和材料报告 | 欧盟 | |
EN 13430:2004 | 包装 可回收材料包装要求 | 欧盟 | |
ASTM D5491 | 源于模塑和挤压物料的再生聚乙烯分类 | 美国 | ASTM D20.95 |
ASTM D6288?17 | 测试前再生塑料的分离和洗涤 | 美国 | |
ASTM D5577?19 | 再生塑料中污染物分离和鉴定技术指南 | 美国 | |
ASTM D5814?18 | 再生聚对苯二甲酸乙二酯(PET)薄片和切片中污染物的测定 | 美国 | |
ASTM D5991?17 | 聚对苯二甲酸乙二酯(PET)片中聚氯乙烯(PVC)污染的分离和鉴定 | 美国 |
标准号 | 标准名称 | 类别 | 归口机构 |
---|---|---|---|
ISO 15270:2008 | 塑料 废弃塑料再生和回收指南 | 国际 | ISO/TC 61/ SC 14 |
ISO/TR 16218:2013 | 包装和环境 化学回收工艺 | 国际 | ISO/TC 122/SC 4 |
ISO/TR 17098:2013 | 包装材料回收 可能影响回收的物质和材料报告 | 国际 | |
ISO 18604:2013 | 包装和环境 材料循环再生 | 国际 | |
ISO 18605:2013 | 包装和环境 能量回收 | 国际 | |
ISO 18606:2013 | 包装和环境 有机循环回收 | 国际 | |
ISO 12418?1:2012 | 塑料 使用后的对苯二酸酯乙二醇酯(PET)瓶回收 第1部分:命名和规格 | 国际 | |
ISO 12418?2:2012 | 塑料 使用后的对苯二酸酯乙二醇酯(PET)瓶回收 第2部分: 试样的制备和性能测定 | 国际 | |
EN 15343:2007 | 塑料 再生塑料 塑料回收可追溯性及合规性评估 | 欧盟 | CEN/TC 249 |
EN 15247:2007 | 塑料 再生塑料 废弃塑料表征 | 欧盟 | |
CEN/TR 15353:2007 | 塑料 再生塑料 再生塑料指南 | 欧盟 | |
CEN/TS 16010:2013 | 塑料 再生塑料 废弃塑料和回收物试验取样 | 欧盟 | |
CEN/TS 16011:2013 | 塑料 再生塑料 样品制备 | 欧盟 | |
EN 13440:2004 | 包装 回收率 定义及计算方法 | 欧盟 | CEN/TC 261/SC4 |
EN 13437:2004 | 包装及材料回收 回收方法指标 回收工艺和流程图 | 欧盟 | |
CEN/TR 13688:2008 | 包装 材料回收 避免影响回收的物质和材料报告 | 欧盟 | |
EN 13430:2004 | 包装 可回收材料包装要求 | 欧盟 | |
ASTM D5491 | 源于模塑和挤压物料的再生聚乙烯分类 | 美国 | ASTM D20.95 |
ASTM D6288?17 | 测试前再生塑料的分离和洗涤 | 美国 | |
ASTM D5577?19 | 再生塑料中污染物分离和鉴定技术指南 | 美国 | |
ASTM D5814?18 | 再生聚对苯二甲酸乙二酯(PET)薄片和切片中污染物的测定 | 美国 | |
ASTM D5991?17 | 聚对苯二甲酸乙二酯(PET)片中聚氯乙烯(PVC)污染的分离和鉴定 | 美国 |
公司 | 技术方法 | 产物 | 产能 |
---|---|---|---|
美国Dupont公司 | 气相低压甲醇解聚工艺 | DMT | - |
美国Eastman 公司 | 低压甲醇解聚工艺 | DMT | - |
德国Hoechst 公司 | 中压甲醇解聚工艺 | DMT | - |
日本帝人株式会社 | 乙二醇解聚?甲醇酯交换工艺 | DMT | 30 000 t/a |
日本AIES株式会社 | 乙二醇解聚工艺 | BHET | 27 000 t/a |
日本月岛机械株式会社 | 碳酸钠水解工艺 | TPA | 8 000 t/a |
公司 | 技术方法 | 产物 | 产能 |
---|---|---|---|
美国Dupont公司 | 气相低压甲醇解聚工艺 | DMT | - |
美国Eastman 公司 | 低压甲醇解聚工艺 | DMT | - |
德国Hoechst 公司 | 中压甲醇解聚工艺 | DMT | - |
日本帝人株式会社 | 乙二醇解聚?甲醇酯交换工艺 | DMT | 30 000 t/a |
日本AIES株式会社 | 乙二醇解聚工艺 | BHET | 27 000 t/a |
日本月岛机械株式会社 | 碳酸钠水解工艺 | TPA | 8 000 t/a |
回收方法 | 优势 | 挑战 | ||
---|---|---|---|---|
物理回收 | 回收工艺简单; 成本低 | 产品力学性能下降; 产品附加值低 | ||
化学回收 | 醇解法 | 一元醇 | 产物DMT提纯难度低 | 成本高 |
二元醇 | 产物利于制备聚氨酯; 回收率高 | 产物BHET提纯难度高; | ||
水解法 | 反应时间短; 碱性条件下水解程度高 | 碱性、酸性条件下产生具有腐蚀性的废液; 中性条件下,产物TPA提纯难度高 | ||
胺解法/氨解法 | 产品具有高附加值 | 能耗高; 反应时间长 | ||
酶解法 | 环境友好; 低结晶度产品易降解 | 高效转化路径未建立; 高结晶度产品降解效率低 |
回收方法 | 优势 | 挑战 | ||
---|---|---|---|---|
物理回收 | 回收工艺简单; 成本低 | 产品力学性能下降; 产品附加值低 | ||
化学回收 | 醇解法 | 一元醇 | 产物DMT提纯难度低 | 成本高 |
二元醇 | 产物利于制备聚氨酯; 回收率高 | 产物BHET提纯难度高; | ||
水解法 | 反应时间短; 碱性条件下水解程度高 | 碱性、酸性条件下产生具有腐蚀性的废液; 中性条件下,产物TPA提纯难度高 | ||
胺解法/氨解法 | 产品具有高附加值 | 能耗高; 反应时间长 | ||
酶解法 | 环境友好; 低结晶度产品易降解 | 高效转化路径未建立; 高结晶度产品降解效率低 |
1 | KAZUMI, H, IKUO T, al YSHOUSUKEet. Biodegradation of Waste PET: A Sustainable Solution for Dealing with Plastic Pollution [J]. Embo Reports, 2019, 20(11):1⁃5. |
2 | KUSUMOCAHYO S P, AMBANI S K, KUSUMADEWI S, et al. Utilization of Used Polyethylene Terephthalate (PET) Bottles for the Development of Ultrafiltration Membrane [J]. Journal of Environmental Chemical Engineering, 2020, 8(6):1⁃11. |
3 | CLAUDIA P, MANFRED S, PETER F. PET Recycling—Contributions of Crystallization to Sustainability [J]. Chemie Ingenieur Technik, 2020, 4(92):452⁃458. |
4 | JEFFERSON M. Whither Plastics?—Petrochemicals, Plastics and Sustainability in a Garbage⁃riddled World [J]. Energy Research and Social Science, 2019, 56:1⁃8. |
5 | GONG J X, KONG T T, et al. Biodegradation of Microplastic Derived from Poly(ethylene terephthalate) with Bacterial Whole⁃cell biocatalysts [J]. Polymers, 2018, 10(12): 1⁃13. |
6 | RONKAY F, MOLNAR B, GERE D, et al. Plastic Waste from Marine Environment: Demonstration of Possible Routes for Recycling by Different Manufacturing Technologies [J]. Waste Management, 2021, 119:101⁃110. |
7 | GU Y F, ZHOU G L, WU Y F, et al. Environmental Performance Analysis on Resource Multiple⁃Life⁃Cycle Recycling System: Evidence from Waste PET Bottles in China [J].Resources, Conservation & Recycling, 2020, 158:1⁃12. |
8 | GOMES T S, VISCONTE L L Y, PACHECO E B A V. Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview [J]. Polymer and the Environment, 2019, 27: 533⁃548. |
9 | GOPALAKRISHNA K G, REDDY N. Regulations on Recycling PET Bottles [M]. United Kingdom, United States: William Andrew Applied Science Publisher, 2019: 23⁃35. |
10 | 周 菁. 中国R⁃PET瓶到瓶技术发展现状及展望 [J]. 合成技术及应用, 2020,35(2): 19⁃ 23. |
ZHOU J. Development Status and Prospect of Bottle to Bottle Technology in China [J]. Synthetic Technology and Application, 2020,35(2): 19⁃ 23. | |
11 | 朱兴松, 何胜君, 曹正俊,等. 再生PET瓶用聚酯的合成及性能探索研究[J]. 合成技术及应用, 2019,34(3):1⁃5. |
ZHU X S, HE S J, CAO Z J, et al. Exploration Research on Synthesis and Properties of Polyester for Regenerated PET Bottle Resin [J]. Synthetic Technology and Application, 2019, 34(3):1⁃5. | |
12 | 马 鑫, 隋海霞, 杜振霞. 食品接触用聚对苯二甲酸乙二醇酯材料回收再利用风险评估方法学进展[J]. 中国食品卫生杂志, 2019, 31(6): 592⁃ 597. |
MA X, SUI H X, DU Z X. Advances in Risk Assessment Methodology for Recycling Polyethylene Terephthalate Materials for Food Contact [J].Chinese Journal of Food Hygiene, 2019, 31(6): 592⁃ 597. | |
13 | PITA F, CASTILHO A.Separation of PET from Other Plastics by Flotation Combined with Alkaline Pretreatment [J]. Polímeros,2020, 30(3): 1⁃9. |
14 | 金 虎, 石 聪, 马 嵩,等. 一种基于近红外光谱的低功耗、便携式PET塑料分选检测装置的设计与实现[J]. 南开大学学报(自然科学版), 2019, 52(4): 46⁃50. |
JIN H, SHI C, MA S, et al. Design and Implementation of Low⁃power and Portable PET Plastic Separation Device Based on Near Infrared Spectroscopy [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2019, 52(4): 46⁃50. | |
15 | ANKITA M, AMRIK B, SUNIL K K. Enzymatic Remediation of Polyethylene Terephthalate (PET)⁃based Polymers for Effective Management of Plastic Wastes: An Overview [J]. Frontiers in Bioengineering and Biotechnology,2020, 8: 1⁃13. |
16 | RAGAERT K, DELVA L, Van G K. Mechanical and Chemical Recycling of Solid Plastic Waste [J]. Waste Management, 2017(69): 24⁃58. |
17 | KAUR G, UISAN K, ONG K L, et al. Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a Circular Economy [J]. Current Opinion in Green and Sustainable Chemistry, 2018, 9: 30⁃39. |
18 | EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the Safety Assessment of the Following Processes Based on Modified Hybrid URRC UnPET Technology Used to Recycle Post consumer PET into Food Contact Materials "CLR rPET", "PET to PET" and "Veolia"[J]. EFSA Journal, 2013, 11(10):3 394⁃34 03. |
19 | CHEN C W, LIU P H, LIN F J, et al. Influence of Different Molecular Weights and Concentrations of Poly (glycidyl methacrylate) on Recycled Poly(ethylene terephthalate): A thermal, Mechanical, and Rheological Study [J]. Journal of Polymers and the Environment, 2020, 28(11): 2 880⁃2 892. |
20 | JIANG Z H, GUO Z G, ZHANG Z Q, et al. Preparation and Properties of Bottle⁃recycled Polyethylene Terephthalate (PET) Filaments [J]. Textile Research Journal, 2019,89(7): 1 207⁃1 214. |
21 | MAJUMDAR A, SHUKLA S, SINGH A A, et al. Circular Fashion: Properties of Fabrics Made from Mechanically Recycled Poly⁃ethylene terephthalate (PET) Bottles [J]. Resources Conservation and Recycling, 2020, 161:1⁃10. |
22 | NISTICO R. Polyethylene Terephthalate (PET) in the Packaging Industry [J]. Polymer Testing, 2020, 90: 1⁃34. |
23 | MISHRA S, GOJE A S. Kinetic and Thermodynamic Study of Methanolysis of Poly (ethylene terephthalate) Waste Powder [J]. Polymer International, 2003, 52(3):337⁃342. |
24 | LIU Q L, LI R S, Fang T. Investigating and Modeling PET Methanolysis under Supercritical Conditions by Response Surface Methodology Approach [J]. Chemical Engineering Journal, 2015, 270: 535⁃541. |
25 | SHEEL A, PANT D. Recycling of Polyethylene Terephthalate Bottles [M]. United Kingdom, United States: William Andrew Applied Science Publisher, 2019:61⁃84. |
26 | RORRER N A,NICHOLSON S,CARPENTER A,et al. Combining Reclaimed PET with Bio⁃Based Monomers Enables Plastics Upcycling [J]. Joule,2019,3(4):1 006⁃1 027. |
27 | ZHOU X,WANG C X,FANG C Q,et al. Structure and Thermal Properties of Various Alcoholysis Products from Waste Poly(Ethylene Terephthalate) [J]. Waste Management, 2019, 85; 164⁃174. |
28 | FANG C Q,LEI W Q,ZHOU X,et al. Preparation and Characterization of Waterborne Polyurethane Containing PET Waste/PPG as Soft Segment [J]. Journal of Applied Polymer Science, 2015, 132(45): 1⁃15. |
29 | GOPAL J, HAMID I, DEEPIKA R, et al. Glycolysis of Post⁃consumer Poly(ethylene terephthalate) Wastes Using Al, Fe and Zn Exchanged Kaolin Catalysts with Lewis Acidity [J]. Advanced Porous Materials, 2017, 5: 128⁃136. |
30 | VOLLMER I; JENKS, M. J F, ROELANDS M.C.P.et al. Beyond Mechanical Recycling: Giving New Life to Plastic Waste [J]. Angewandte Chemie International Edition,2020, 59: 15 402⁃15 423. |
31 | FUKUSHIMA, K, COADY D J, JONES G O, et al. Unexpected Efficiency of Cyclic Amidine Catalysts in Depolymerizing Poly (ethylene terephthalate) [J]. Journal of Polymer Science Part A Polymer Chemistry,2013, 51(7): 1 606⁃1 611. |
32 | YUE Q F, XIAO L F, ZHANG M L, et al. The Glycolysis of Poly(ethylene terephthalate) Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts [J]. Polymers,2013, 5(4): 1 258⁃1 271. |
33 | BARTOLOME L, IMRAN M, LEE K G, et al. Superparamagnetic y⁃Fe2O3 Nanoparticles as an Easily Recoverable Catalyst for the Chemical Recycling of PET [J]. Green Chemistry. 2014, 16(1): 279⁃286. |
34 | VEREGUE F R, PEREIRA D S C T, MOISES M P, et al. Ultrasmall cobaltnanoparticles as a Catalyst for PET Glycolysis: A Green Protocol for Pure Hydroxyethyl Terephthalate Precipitation without Water [J]. ACS Sustainable Chemistry Engineering, 2018, 6(9):12 017⁃12 024. |
35 | SAMSON L, ZARHANG L, Chhakchhuak L, et al. Glycolysis of Poly(ethylene terephthalate) Using Biomass⁃waste Derived Recyclable Heterogeneous Catalyst [J]. Polymers, 2021,13(1): 1⁃13. |
36 | YOSHIOKA T, OTA M, OKUWAKI A. Conversion of A Used Poly(ethylene terephthalate) Bottle into Oxalic Acid and Terephthalic Acid by Oxygen Oxidation in Alkaline Solutions at Elevated Temperatures [J]. Industrial and Engineering Chemistry Research, 2003, 42(4):675⁃679. |
37 | SUKHJINDER S, SHELJA S, AHMAD U, et al. Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle⁃Shaped Terephthalic Acid.[J]. J Nanosci Nanotechnol, 2018, 18(8):5 804⁃5 809. |
38 | AGUADO A, MARTINEZ L, BECERRA L, et al. Chemical Depolymerisation of PET Complex Waste: Hydrolysis vs. Glycolysis [J]. Journal of Material Cycles and Waste Management, 2014, 16(2):201⁃210. |
39 | MOGHBELI M R, NAMAYANDEH S, HASHEMABADI S H. Wet Hydrolysis of Waste Polyethylene Terephthalate Thermoplastic Resin with Sulfuric Acid and CFD Simulation for High Viscous Liquid Mixing [J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 1⁃15. |
40 | GUO W Z , LU H , LI X K , et al. Tungsten⁃promoted Titania as Solid Acid for Catalytic Hydrolysis of Waste Bottle PET in Supercritical CO2 [J]. RSC Advances, 2016, 6(49):43 171⁃43 184. |
41 | SONG X , ZHANG S , ZHANG D. Catalysis Investigation of PET Depolymerization under Metal Oxides by Microwave Irradiation [J]. Journal of Applied Polymer Science, 2010, 117(6):3 155⁃3 159. |
42 | KANG M J , YU H J , JEGAL J , et al. Depolymerization of PET into Terephthalic Acid in Neutral Medmia Catalyzed by the ZSM⁃5 Acidic Catalyst [J]. Chemical Engineering Journal, 2020, 398:125⁃160. |
43 | TEOTIA M, TARANNUM N, SONI R K. Depolymerization of PET Waste to Potentially Applicable Aromatic Amides: Their Characterization and DFT Study [J]. Journal of Applied Polymer Science. 2017, 134: 451⁃460. |
44 | ZHANG L N, LIU L Z, YUE Q F, et al. From Aminolysis Product of PET Waste to Value⁃added Products of Polymer and Assistants [J]. Polymers and Polymer Composites, 2014, 22(1):13⁃16. |
45 | ZHOU J F, LI M, ZHONG L, et al. Aminolysis of Polyethylene Terephthalate Fabric by An Eco⁃friendly Method Involving the Gradual Concentration of Dilute Ethylenediamine [J]. Colloids and Surfaces A , 2016, 513: 146⁃152. |
46 | SHAMSI R, ABDOUSS M, SADEGHI G M M, et al. Synthesis and Characterization of Novel Polyurethanes Based on Aminolysis of Poly(ethylene terephthalate) Wastes, and Evaluation of Their Thermal and Mechanical Properties [J]. Polymer International, 2010, 58(1):22⁃30. |
47 | MITTAL A, SONI R K, DUTT K, et al. Scanning Electron Microscopic Study of Hazardous Waste Flakes of Polyethylene Terephthalate (PET) by Aminolysis and ammonolysis [J]. Journal of Hazardous Materials, 2010, 178:390⁃396. |
48 | JAIN A, SONI R K. Spectroscopic Investigation of End Products Obtained by Ammonolysis of Poly (ethylene terephthalate) Waste in the Presence of Zinc Acetate as A Catalyst [J]. Journal of Polymer Research, 2007, 14:475⁃481. |
49 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A Bacterium that Degrades and Assimilates Poly (ethylene terephthalate). Science, 2016, 351(6278): 1 196⁃1 199. |
50 | MOOG D, SCHMITT J, SENGER J, et al. Using a Marine Microalga as A Chassis for Polyethylene Terephthalate (PET) Degradation[J]. Microb Cell Fact, 2019, 18(171): 1⁃15. |
51 | THEN J, WEI R, OESER T, et al. A Disulfide Bridge in the Calcium Binding Site of A Polyester Hydrolase Increases Its Thermal Stability and Activity Against Polyethylene Terephthalate [J]. Febs Open Bio, 2016, 6(5): 425⁃432. |
52 | RONKVIST AM, XIE WC, LU WH, et al. Cutinasecatalyzed Hydrolysis of Poly (ethylene terephthalate) [J]. Macromolecules, 2009, 42(14): 5 128⁃5 138. |
53 | 刘彤瑶, 辛 艺, 刘杏忠, 等. 微生物降解塑料的研究进展[J]. 生物工程学报, 2020, 37(8): 1⁃15. |
LIU T Y, XIN Y, LIU J X, et al. Research Progress on Microbial Degradation of Plastic [J]. Chinese Journal of Biotechnology, 2020, 37(8): 1⁃15. | |
54 | 许 楹, 殷超凡, 岳纹龙,等. 石油基塑料的微生物降解[J]. 生物工程学报, 2019, 35(11): 2 092⁃2 103. |
XU Y, YIN C F, YUE W L, et al. Microbial Degradation of Petroleum⁃based Plastics[J]. Chinese Journal of Biotechnology, 2019, 35(11): 2 092⁃2 103. |
[1] | 张鑫, 全淑苗. 基于中国政策的废旧农膜回收再利用现状研究[J]. 中国塑料, 2022, 36(7): 136-142. |
[2] | 雷育杰, 陈明焕, 王洁瑶, 陈旺治, 李磊. 回收聚乙烯的交联发泡及其产品性能研究[J]. 中国塑料, 2022, 36(6): 124-129. |
[3] | 宋仁达, 武高健, 陈俊翔, 张有忱, 杨卫民, 谢鹏程. 微孔发泡PP/PET/CNTs复合材料的制备及其电磁屏蔽效能研究[J]. 中国塑料, 2022, 36(2): 1-7. |
[4] | 黎帅, 龙春光, 闵建新, 周卓. 基于改性PET的极限PV值测试及摩擦学性能比较研究[J]. 中国塑料, 2021, 35(9): 87-94. |
[5] | 朱道峰. 以回收聚酯为主要原料的PET/PE合金片材的研制及应用[J]. 中国塑料, 2021, 35(8): 100-104. |
[6] | 顾晓华, 吕士伟, 刘思雯, 王佳佳, 康媛媛. 废旧聚氨酯硬质泡沫塑料的降解回收及再利用[J]. 中国塑料, 2021, 35(8): 105-111. |
[7] | 王富玉, 郭金强, 张玉霞, 杨涛. 塑料包装材料的减量化与单材质化技术[J]. 中国塑料, 2021, 35(8): 136-145. |
[8] | 何和智, 王毅, 高俊. 拉伸流场下rPE/PA6共混物的制备及性能研究[J]. 中国塑料, 2021, 35(8): 189-194. |
[9] | 张玉霞, 杨涛. 关于构建塑料包装废弃物的分类、收集与管理体系的思考[J]. 中国塑料, 2021, 35(8): 21-29. |
[10] | 孙小东, 曹鼎, 胡倩倩, 姚文清, 李景虹, 冯拥军. 废弃塑料的化学回收资源化利用研究进展[J]. 中国塑料, 2021, 35(8): 44-54. |
[11] | 李明丰, 蔡志强, 邹亮, 魏晓丽, 习远兵, 王国清, 蔡立乐, 张哲民, 夏国富, 蒋海滨. 中国石化废旧塑料化学回收与化学循环技术探索[J]. 中国塑料, 2021, 35(8): 64-76. |
[12] | 蔡毅, 田晖, 谢淼雪. 废旧家用电器塑料资源化利用及发展趋势[J]. 中国塑料, 2021, 35(8): 77-83. |
[13] | 李攀, 李东峰, 陆新焱, 彭麒桦, 卢波, 季君晖. 回收PE地膜残膜在高性能沥青路面新材料中应用[J]. 中国塑料, 2021, 35(8): 84-87. |
[14] | 矫佳利, 杨卫民, 高晓东, 宋立健, 丁玉梅, 程礼盛. 回收聚乙烯模板法制备碳纤维的机理分析[J]. 中国塑料, 2021, 35(8): 94-99. |
[15] | 倪佳, 段凯歌, 朱辉, 胡明远, 程志, 于东明. 新型EVOH/PE⁃RT合金包覆PE⁃RT双层阻氧管的制备及性能研究[J]. 中国塑料, 2021, 35(7): 32-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||