1 |
LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362⁃374.
|
2 |
田立平, 王学琳, 王晓波, 等. 水环境中微塑料污染特性及去除技术研究进展[J]. 山东建筑大学学报, 2020, 35(4): 60⁃66.
|
|
TIAN L P, WANG X L, WANG X B, et al. Research progress of micro plastic pollution characteristics and removal technology in aquatic environment[J]. Journal of Shandong Jianzhu University, 2020, 35(4): 60⁃66.
|
3 |
张子琪, 高淑红, 康园园, 等. 中国水环境微塑料污染现状及其潜在生态风险[J]. 环境科学学报, 2020, 40(10): 3 574⁃3 581.
|
|
ZHANG Z Q, GAO S H, KANG Y Y, et al. Current status of microplastics contamination in China’s water environment and its potential ecological risks[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3 574⁃3 581.
|
4 |
SANA S S, DOGIPARTHI L K, GANGADHAR L, et al. Effects of microplastics and nanoplastics on marine environment and human health[J]. Environmental Science and Pollution Research, 2020, 27(36): 44 743⁃44 756.
|
5 |
DONG X S, LIU X B, HOU Q L, et al. From natural environment to animal tissues: A review of microplastics (nanoplastics) translocation and hazards studies[J]. Science of the Total Environment, 2023, 855: 158686.
|
6 |
DING R R, TONG L, ZHANG W C. Microplastics in freshwater environments: sources, fates and toxicity[J]. Water Air and Soil Pollution, 2021, 232(5): 181.
|
7 |
NAWALAGE N S K, BELLANTHUDAWA B K A. Synthetic polymers in personal care and cosmetics products (PCCPs) as a source of microplastic (MP) pollution[J]. Marine Pollution Bulletin, 2022, 182: 113927.
|
8 |
LASKAR N, KUMAR U. Plastics and microplastics: A threat to environment[J]. Environmental Technology & Innovation, 2019, 14: 100352.
|
9 |
AKANYANGE S N, ZHANG Y, ZHAO X, et al. A holistic assessment of microplastic ubiquitousness: Pathway for source identification in the environment[J]. Sustainable Production and Consumption, 2022, 33: 113⁃145.
|
10 |
葛琦, 周志文, 刘慧婷. 天然水体中微塑料的来源、分布及毒性效应[J]. 环境保护与循环经济, 2022, 42(2): 55⁃59.
|
11 |
韩书宇, 付英, 张游, 等. 城市污水中微塑料特性、检测及去除[J]. 工业用水与废水, 2021, 52(5): 1⁃5.
|
|
HAN S Y, FU Y, ZHANG Y, et al. Characteristics, detection and removal of microplastics in urban sewage[J]. Industrial Water & Wastewater, 2021, 52(5): 1⁃5.
|
12 |
JIANG C B, YIN L S, LI Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91⁃98.
|
13 |
LESTARI P, TRIHADININGRUM Y, WIJAYA B A, et al. Distribution of microplastics in Surabaya River, Indonesia[J]. Science of the Total Environment, 2020, 726: 138560.
|
14 |
RODRIGUES M O, ABRANTES N, GONCALVES F J M, et al. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antua River, Portugal)[J]. Science of the Total Environment, 2018, 633: 1 549⁃1 559.
|
15 |
ZAKI M R M, YING P X, ZAINUDDIN A H, et al. Occurrence, abundance, and distribution of microplastics pollution: an evidence in surface tropical water of Klang River estuary, Malaysia[J]. Environmental Geochemistry and Health, 2021, 43(9): 3 733⁃3 748.
|
16 |
PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166⁃175.
|
17 |
DI M X, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616: 1 620⁃1 627.
|
18 |
WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1 369⁃1 374.
|
19 |
陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3 333⁃3 343.
|
|
CHEN X X, LIU M, CHEN Y. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3 333⁃3 343.
|
20 |
SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711⁃719.
|
21 |
HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707: 135601.
|
22 |
LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China[J]. Science of the Total Environment, 2018, 644: 375⁃381.
|
23 |
TA A T, BABEL S, HAARSTICK A. Microplastics contamination in a high population density area of the Chao Phraya River, Bangkok[J]. Journal of Engineering and Technological Sciences, 2020, 52(4): 534⁃545.
|
24 |
OSORIO E D, TANCHULING M A N, DIOLA M. Microplastics occurrence in surface waters and sediments in Five River Mouths of Manila Bay[J]. Frontiers in Environmental Science, 2021, 9: 719274.
|
25 |
刘禹, 史小红, 张生, 等. 乌梁素海低密度微塑料聚合物沉降规律[J]. 环境科学, 2022, 43(3): 1 463⁃1 471.
|
|
LIU Y, SHI X H, ZHANG S, et al. Deposition law of low⁃density microplastics aggregation in Wuliangsu Lake[J]. Environmental Science, 2022, 43: 1 463⁃1 471.
|
26 |
BANDOW N, WILL V, WACHTENDORF V, et al. Contaminant release from aged microplastic[J]. Environmental Chemistry, 2017, 14(6): 394⁃405.
|
27 |
LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation[J]. Environmental Science & Technology, 2020, 54(14): 8 719⁃8 727.
|
28 |
王俊杰, 陈晓晨, 李权达, 等. 老化作用对微塑料吸附镉的影响及其机制[J]. 环境科学, 2022, 43(4): 2 030⁃2 038.
|
|
WANG J J, CHEN X C, LI Q D, et al. Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J].Environmental Science, 2022, 43(4): 2 030⁃2 038.
|
29 |
MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515.
|
30 |
刘洁, 代雨, 姚全威, 等. 水环境中微塑料分布现状及特征研究进展[J]. 广东化工, 2020, 47(16): 93⁃94.
|
|
LIU J, DAI Y, YAO Q W, et al. Distribution status and characteristics of microplastics in water environment: a review[J]. Guangdong Chemical Industry, 2020, 47(16): 93⁃94.
|
31 |
COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2 588⁃2 597.
|
32 |
刘治君, 杨凌肖, 王琼, 等. 微塑料在陆地水环境中的迁移转化与环境效应[J]. 环境科学与技术, 2018, 41(4): 59⁃65,90.
|
|
LIU Z J, YANG L X, WANG Q, et al. Migration and transformation of microplastics in terrestrial waters and effects on eco⁃environment[J].Environmental Science & Technology, 2018, 41(4): 59⁃65,90.
|
33 |
SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246⁃265.
|
34 |
JABEEN K, LI B W, CHEN Q Q, et al. Effects of virgin microplastics on goldfish (Carassius auratus)[J]. Chemosphere, 2018, 213: 323⁃332.
|
35 |
WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organi⁃sms: A review[J]. Environmental Pollution, 2013, 178: 483⁃492.
|
36 |
POSSATTO F E, BARLETTA M, COSTA M F, et al. Plastic debris ingestion by marine catfish: An unexpected fisheries impact[J]. Marine Pollution Bulletin, 2011, 62(5): 1 098⁃1 102.
|
37 |
马维宇, 韦斯. 环境中的微塑料:赋存、检测及其危害[J]. 环境监控与预警, 2020, 12(5): 68⁃74.
|
|
MA W Y, WEI S. Microplastics in the environment: occurrence, detection and harm[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 68⁃74.
|
38 |
ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263.
|
39 |
刘倡君, 罗专溪, 闫钰, 等. 九龙江口红树林湿地表层沉积物中微塑料赋存特征与重金属的关系[J]. 环境科学, 2022, 43(1): 239⁃246.
|
|
LIU C J, LUO Z X, YAN Y, et al. Occurrence characteristics of microplastics in mangrove sediments in the Jiu⁃long River Estuary and the association with heavy metals[J]. Environmental Science, 2022, 43(1): 239⁃246.
|
40 |
LU K, QIAO R X, AN H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202: 514⁃520.
|
41 |
王林, 王姝歆, 曾祥英, 等. 老化作用对微塑料吸附四环素的影响及其机制[J]. 环境科学,2022,10: 4 511⁃4 521.
|
|
WANG L, WANG S X, ZENG X Y, et al. Effect of a⁃ging on adsorption of tetracycline by microplastics and the mechanisms[J]. Environmental Science,2022,10: 4 511⁃4 521.
|
42 |
HAN Y, ZHOU W S, TANG Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel mytilus coruscus and induce synergistic immunotoxic effects[J]. Science of the Total Environment, 2021, 770: 145273.
|
43 |
胡嘉敏, 左剑恶, 李金波, 等. 微塑料对鲫鱼生长、肝脏损伤和肠道微生物组成的影响[J]. 环境科学, 2022, 43(7): 3 664⁃3 671.
|
|
HU J M, ZUO J E, LI J B, et al. Effects of microplastic exposure on crucian growth, liver damage,and gut microbiome composition[J]. Environmental Science, 2022, 43(7): 3 664⁃3 671.
|
44 |
SUN B B, LIU J, ZHANG Y Q, et al. Leaching of polybrominated diphenyl ethers from microplastics in fish oil: Kinetics and bioaccumulation[J]. Journal of Hazardous Materials, 2021, 406: 124726.
|
45 |
JANG M, SHIM W J, HAN G M, et al. Styrofoam debris as a source of hazardous additives for marine organisms[J]. Environmental Science & Technology, 2016, 50(10): 4 951⁃4 960.
|
46 |
HAFEZI S A, ABDEL⁃RAHMAN W M. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy[J]. Current Molecular Pharmacology, 2019, 12(3): 230⁃238.
|
47 |
CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1 312⁃1 321.
|
48 |
LU I C, CHAO H R, MANSOR W N W, et al. Levels of phthalates, bisphenol⁃a, nonylphenol, and microplastics in fish in the estuaries of northern Taiwan and the impact on human health[J]. Toxics, 2021, 9(10): 246.
|
49 |
BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2 388⁃2 392.
|
50 |
MATHIEU⁃DENONCOURT J, MARTYNIUK C J, LOUGHERY J R, et al. Lethal and sublethal effects of phthalate diesters in Silurana tropicalis larvae[J]. Environmental Toxicology and Chemistry, 2016, 35(10): 2 511⁃2 522.
|
51 |
MENG J, ZHANG Q, ZHENG Y F, et al. Plastic waste as the potential carriers of pathogens[J]. Current Opinion in Food Science, 2021, 41: 224⁃230.
|
52 |
崔铁峰, 廖晨延, 崔彤彤, 等. 水环境中微塑料的危害及防治[J]. 河北渔业, 2020, 11: 55⁃59.
|
53 |
IMRAN M, DAS K R, NAIK M M. Co⁃selection of multi⁃antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat[J]. Chemosphere, 2019, 215: 846⁃857.
|
54 |
GOLDSTEIN M C, CARSON H S, ERIKSEN M. Relationship of diversity and habitat area in North Pacific plastic⁃associated rafting communities[J]. Marine Biology, 2014, 161(6): 1 441⁃1 453.
|
55 |
DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 46687.
|
56 |
FORTE M, IACHETTA G, TUSSELLINO M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in Vitro, 2016, 31: 126⁃136.
|
57 |
PRIETL B, MEINDL C, ROBLEGG E, et al. Nano⁃sized and micro⁃sized polystyrene particles affect phagocyte function[J]. Cell Biology and Toxicology, 2014, 30(1): 1⁃16.
|
58 |
FUCHS A K, SYROVETS T, HAAS K A, et al. Carboxyl⁃ and amino⁃functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets[J]. Biomaterials, 2016, 85: 78⁃87.
|
59 |
BROWN D M, WILSON M R, MACNEE W, et al. Size⁃dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3): 191⁃199.
|
60 |
MAHADEVAN G, VALIYAVEETTIL S. Understan⁃ding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK⁃21 cell line[J]. Scientific Reports, 2021, 11(1): 2089.
|
61 |
INKIELEWICZ⁃STEPNIAK I, TAJBER L, BEHAN G, et al. The role of mucin in the toxicological impact of polystyrene nanoparticles[J]. Materials, 2018, 11(5): 724.
|
62 |
RUENRAROENGSAK P, TETLEY T D. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells[J]. Particle and Fibre Toxicology, 2015, 12: 19.
|
63 |
JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649: 308⁃317.
|
64 |
LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631/632: 449⁃458.
|
65 |
XIA L, GU W H, ZHANG M Y, et al. Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation[J]. Particle and Fibre Toxicology, 2016, 13: 63.
|
66 |
MCCARTHY J, GONG X, NAHIRNEY D, et al. Polystyrene nanoparticles activate ion transport in human airway epithelial cells[J]. International Journal of Nanomedicine, 2011, 6: 1 343⁃1 356.
|
67 |
LU S, LIU L B, YANG Q X, et al. Removal characteri⁃stics and mechanism of microplastics and tetracycline composite pollutants by coagulation process[J]. Science of the Total Environment, 2021, 786: 147508.
|
68 |
ZHOU G Y, WANG Q G, LI J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism[J]. Science of the Total Environment, 2021, 752: 141837.
|
69 |
ZHANG Y J, ZHOU G Y, YUE J P, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagu⁃lant aids[J]. Science of the Total Environment, 2021, 800: 149589.
|
70 |
XUE J K, PELDSZUS S, VAN DYKE M I, et al. Removal of polystyrene microplastic spheres by alum⁃based coagulation⁃flocculation⁃sedimentation (CFS) treatment of surface waters[J]. Chemical Engineering Journal, 2021, 422: 130023.
|
71 |
RAJALA K, GRONFORS O, HESAMPOUR M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine⁃based chemicals[J]. Water Research, 2020, 183: 116045.
|
72 |
MA B W, XUE W J, DING Y Y, et al. Removal characteristics of microplastics by Fe⁃based coagulants during drinking water treatment[J]. Journal of Environmental Sciences, 2019, 78: 267⁃275.
|
73 |
PIVOKONSKY M, PIVOKONSKA L, NOVOTNA K, et al. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment[J]. Science of the Total Environment, 2020, 741: 140236.
|
74 |
MA B W, XUE W J, HU C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration du⁃ring drinking water treatment[J]. Chemical Engineering Journal, 2019, 359: 159⁃167.
|
75 |
WANG Z F, LIN T, CHEN W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700: 134520.
|
76 |
SILLANPAA M, NCIBI M C, MATILAINEN A, et al. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review[J]. Chemosphere, 2018, 190: 54⁃71.
|
77 |
ZHAO L, DENG J H, SUN P Z, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis[J]. Science of the Total Environment, 2018, 627: 1 253⁃1 263.
|
78 |
NABI I, BACHA A U R, LI K J, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J]. Iscience, 2020, 23(7): 101326.
|
79 |
UHEIDA A, MEJIA H G, ABDEL⁃REHIM M, et al. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system[J]. Journal of Hazardous Materials, 2021, 406: 124299.
|
80 |
EBRAHIMBABAIE P, YOUSEFI K, PICHTEL J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status[J]. Science of the Total Environment, 2022, 806: 150603.
|
81 |
ARIZA⁃TARAZONA M C, VILLARREAL⁃CHIU J F, HERNANDEZ⁃LOPEZ J M, et al. Microplastic pollution reduction by a carbon and nitrogen⁃doped TiO2: Effect of pH and temperature in the photocatalytic degradation process[J]. Journal of Hazardous Materials, 2020, 395: 122632.
|
82 |
KANG J, ZHOU L, DUAN X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3): 745⁃758.
|
83 |
LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3 579⁃3 588.
|
84 |
HU K S, ZHOU P, YANG Y Y, et al. Degradation of microplastics by a thermal Fenton reaction[J]. ACS ES&T Engineering, 2022, 2(1): 110⁃120.
|
85 |
MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro⁃Fenton⁃like system with a TiO2/graphite cathode[J]. Journal of Hazardous Materials, 2020, 399: 123023.
|
86 |
MA D S, YI H, LAI C, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104.
|
87 |
ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110⁃121.
|
88 |
KUNDU A, SHETTI N P, BASU S, et al. Identification and removal of micro⁃ and nano⁃plastics: Efficient and cost⁃effective methods[J]. Chemical Engineering Journal, 2021, 421: 129816.
|
89 |
TALVITIE J, MIKOLA A, KOISTINEN A, et al. Solutions to microplastic pollution⁃removal of microplastics from wastewater effluent with advanced wastewater treatment technologies[J]. Water Research, 2017, 123: 401⁃407.
|
90 |
LARES M, NCIBI M C, SILLANPAA M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236⁃246.
|
91 |
LI L, LIU D, SONG K, et al. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water[J]. Marine Pollution Bulletin, 2020, 150: 110724.
|
92 |
YU H R, DU C Y, QU F S, et al. Efficient biostimulants for bacterial quorum quenching to control fouling in MBR[J]. Chemosphere, 2022, 286: 131689.
|
93 |
DENG L J, GUO W S, NGO H H, et al. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community[J]. Bioresource Technology, 2020, 312: 123612.
|