
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (8): 118-124.DOI: 10.19491/j.issn.1001-9278.2024.08.019
• 综述 • 上一篇
收稿日期:
2023-11-17
出版日期:
2024-08-26
发布日期:
2024-08-19
通讯作者:
李松(1996—),男,博士研究生,从事公路工程技术研究,1547768098@qq.com作者简介:
雷晓萍(1984—),女,高级工程师,从事公路工程技术研究,xp201103@163.com
基金资助:
LEI Xiaoping1(), LI Song2(
), DENG Cuicui1, WANG Pidong1
Received:
2023-11-17
Online:
2024-08-26
Published:
2024-08-19
Contact:
LI Song
E-mail:xp201103@163.com;1547768098@qq.com
摘要:
作为车辆轮胎的主要原材料,橡胶的摩擦性能决定车辆的制动效率和安全性能。因此,如何准确表征并提高橡胶材料的摩擦性能,是当前研究的一大重点。本文简要介绍了橡胶材料的摩擦机理,讨论了橡胶材料摩擦性能的表征方法,归纳了常用的橡胶材料摩擦性能增强方法,最后展望了未来的研究方向。
中图分类号:
雷晓萍, 李松, 邓翠翠, 王丕栋. 轮胎用橡胶材料摩擦性能研究进展[J]. 中国塑料, 2024, 38(8): 118-124.
LEI Xiaoping, LI Song, DENG Cuicui, WANG Pidong. Research progress in tribological properties of rubber material for tire[J]. China Plastics, 2024, 38(8): 118-124.
1 | 底秀玲,仲富,仇新玲,等.橡胶粉改性沥青的热稳定性及其复合沥青的研究[J].化工新型材料,2023,51(02):229⁃234. |
DI X L, ZHONG F, QIU X L,et al. Study on the thermal stability of rubber powder modified asphalt and its composite asphalt[J]. New Chemical Materials,2023,51(02):229⁃234. | |
2 | 闫海生.我国合成橡胶产业现状及未来发展分析[J].化工新型材料,2021,49(02):38⁃42. |
RUN H S. Current situation and future development analysis of synthetic rubber in China[J]. New Chemical Materials,2021,49(02):38⁃42. | |
3 | Wititanapanit J, Carvajal⁃Munoz J S, Airey G. Performance⁃related and rheological characterisation of natural rubber modified bitumen[J]. Construction Building and Materials, 2021, 268:121058. |
4 | Sermaraj M, Ramanathan K, Rajkumar D R, et al. Effect of crack and vibration of waste tyre rubber hybrid composite for energy absorption applications[J]. Progress in Rubber Plastics and Recycling Technology, 2023, 39(3):233⁃249. |
5 | 汤洁,张丽慧,周春宇,等.橡胶减摩抗磨改性研究进展[J/OL].摩擦学学报,2023:1⁃32.[2023⁃07⁃02]. |
TANG J, ZHANG L H, ZHOU C Y, et al. Research progress of anti⁃friction and anti⁃wear modification of rubber[J].Tribology, 2023:1⁃32.[2023⁃07⁃02]. | |
6 | 朱洪洲, 廖亦源.沥青路面抗滑性能研究现状[J].公路, 2018 (1) :35⁃46. |
ZHU H Z, LIAO Y Y. Research situations of research on anti⁃skid property of asphalt pavement[J]. Highway, 2018 (1) :35⁃46. | |
7 | 倪敬松.沥青路面抗滑性能研究[J].公路交通科技:应用技术版, 2018, 14 (6) :26⁃27. |
NI J S. Research on skid resistance of asphalt pavement[J]. Highway Traffic Technology (Applied Technology Edition), 2018, 14 (6) :26⁃27. | |
8 | Do M T, Cerezo V, Ropert C. Questioning the approach to predict the evolution of tire/road friction with traffic from road surface texture[J]. Surface Topography: Metrology and Properties,2020, 8(2):024004. |
9 | Riahi E, Do M T, Kane M. An energetic approach to model the relationship between tire rolling friction and road surface macrotexture[J]. Surface Topography: Metrology and Properties,2020,10(1):014001. |
10 | Alvarez L, Yi J. Adaptive emergency braking control in automated highway systems[C]//In Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, 1999:3 740⁃3 745. |
11 | Schinkel M, Hunt K. Anti⁃lock braking control using a sliding mode like approach[C]//In American Control Conference, IEEE, 2002: 2 386–2 391. |
12 | Wellstead P, Pettit N. Analysis and redesign of an antilock brake system controller[C]//IEEE Proceedings⁃Control Theory and Applications,1997, 144(5): 413–426. |
13 | Grosch K. The relation between the friction and visco⁃elastic properties of rubber[J]. Proc R Soc Lond Ser A, 1963,274:21⁃39. |
14 | 黄飞洪,王钢明,许一伟,等.不同交联密度下硫化丁腈橡胶摩擦特性的分子动力学模拟[J].机械工程材料,2022,46(09):76⁃81,88. |
HUANG F H, WANG G M, XU Y W, et al. Molecular dynamics simulation of tribological properties of vulcanized nitrile butadiene rubber with different crosslinking densities[J]. Materials for Mechanical Engineering, 2022,46(09):76⁃81,88. | |
15 | Friel S, Woodward D. High friction surfacing systems using blends of natural aggregate and calcined bauxite[J]. Coatings, 2019,9(3):177. |
16 | 何诗瑶. 基于分子动力学模拟的丁腈橡胶溶胀及摩擦研究[D].沈阳:沈阳工业大学,2021. |
17 | Kane M, Cerezo V. A contribution to tire/road friction modeling: From a simplified dynamic frictional contact model to a "Dynamic Friction Tester" model[J]. Wear, 2015, 342:163⁃171. |
18 | Kane M, Do M T, Cerezo V, et al. Contribution to pavement friction modelling: an introduction of the wetting effect[J]. International Journal of Pavement Engineering, 2019, 20(8):965⁃976. |
19 | Kane M, Edmondson V. Modelling the bitumen scour effect: Enhancement of a dynamic friction model to predict the skid resistance of rubber upon asphalt pavement surfaces subjected to wear by traffic polishing[J]. Wear, 2018:400⁃401, 100⁃110. |
20 | Lei Y, Wan H. Effects of vehicle speeds on the Hydro dynamic pressure of pavement surface: Measurement with a designed device [J]. Measurement, 2017, 98:1⁃9. |
21 | Groschk A. The relation between the friction and visco⁃elastic properties of rubber[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1963,274: 21⁃39. |
22 | 黄晓明,郑彬双.沥青路面抗滑性能研究现状与展望 [J].中国公路学报,2019,32(04):32⁃49. |
HUANG X M, ZHENG B S. Research status and prospect of anti⁃skid performance of asphalt pavement[J]. China Journal of Highway and Transport, 2019,32(04):32⁃49. | |
23 | Persson B N J. Role of frictional heating in rubber friction[J]. Tribology Letters, 2014, 56(1):77⁃92. |
24 | Grigoriadis K, Mavros G, Knowles J, et al. Experimental investigation of tyre–road friction considering topographical roughness variation and flash temperature[J]. Tribology International,2023, 181:108294. |
25 | Lorenz B, Oh Y R, Nam S K, et al. Rubber friction on road surfaces: Experiment and theory for low sliding speeds[J]. Journal of Chemical Physics, 2015:142. |
26 | Emami A, Khaleghian S, Taheri S. Asperity⁃based modification on theory of contact mechanics and rubber friction for self⁃affine fractal surfaces[J]. Friction, 2021,9:1 707⁃1 725. |
27 | Hichri Y, Cerezo V, Do M T.Effect of dry deposited particles on the tire/road friction[J].Wear 2017,376/377:1 437⁃1 449. |
28 | 国家市场监督管理总局,国家标准化管理委员会. 橡胶摩擦性能的测定: [S].北京:中国标准出版社,2021. |
29 | 逄莉.UMT-2试验机在橡胶摩擦性能表征中的应用[J].青岛科技大学学报(自然科学版),2017,38(S2):79⁃81,85. |
JIANG L. Application of UMT-2 in rubber friction performance[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017,38(S2):79⁃81,85. | |
30 | 刘增辉,谈金祝,高小荃.填充纳米氧化铝对氢化丁腈橡胶摩擦磨损行为的影响[J].高分子材料科学与工程,2020,36(02):60⁃67,73. |
LIU Z H, TAN J Z, GAO X Q. Effect of filled nano⁃alumina on friction and wear behavior of hydrogenated nitrile butadiene rubber[J]. Polymer Materials Science & Engineering, 2020,36(02):60⁃67,73. | |
31 | 王广飞,许家旺,周伟,等.短碳纤维对丁腈橡胶力学及摩擦学性能的影响[J].玻璃钢/复合材料,2019,309(10):83⁃90. |
WANG G F, XU J W, ZHOU W, et al. Effect of short carbon fiber on mechanical and tribological properties for nitrile rubber[J]. Composites Science and Engineering, 2019,309(10):83⁃90. | |
32 | 王国林,乔磊,周海超,等.PCR轮胎接地性态对噪声与滚动阻力影响研究[J].机械工程学报,2019,55(16):123⁃131. |
WANG G L, QIAO L, ZHOU H C, et al. Influence of PCR tire grounding characteristics oto noise and rolling resistance[J]. Journal of Mechanical Engineering, 2019,55(16):123⁃131. | |
33 | Kawakami A, Ishigaki T, Shirai Y, et al. Evaluation method of pavement surface characteristics for rolling resistance [J]. Road Materials and Pavement Design, 2017, 18: 2⁃11. |
34 | Vollor T W, Hanson D I. Development of laboratory procedure for measuring friction of HMA mixtures⁃Phase I[J]. Final Report of NCAT,2006: 6. |
35 | Liu Y, Fwa T F, Choo Y S. Effect of surface macrotexture on skid resistance measurements by the British pendulum test [J]. Journal of Testing and Evaluation, 2004, 32 (4): 304–309 |
36 | Wang D W, Wang H, Bu Y, et al. Evaluation of aggregate resistance to wear with micro⁃deval test in combination with aggregate imaging techniques [J].Wear, 2015,338/339:288⁃296. |
37 | Wang D W, Chen X, Xie X G, et al. A study of the laboratory polishing behavior of granite as road surfacing aggregate [J]. Construction and Building Materials, 2015, 89:25⁃35. |
38 | Zong Y, Li S, Zhang J, et al. Effect of aggregate type and polishing level on the long⁃term skid resistance of thin friction course[J]. Construction Building and Materials, 2021:122730. |
39 | Guo F, Zhang J, Pei J, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Front Struct Civ Eng, 2020,14(2):435⁃445. |
40 | Guo F, Zhang J, Pei J, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction Building and Materials, 2020, 252:118956. |
41 | Zhang Liqun, Michael L. Greenfield Analyzing properties of model asphalts using molecular simulation[J]. Energy Fuel, 2007,21(3):1 712⁃1 716. |
42 | Dong Z, Liu Z, Wang P, et al. Nanostructure characterization of asphalt⁃aggregate interface through molecular dynamics simulation and atomic force microscopy[J]. Fuel, 2017,189: 155⁃163. |
43 | Xiang H, He Z, Tang H, et al. Healing behavior of thermo⁃oxygen aged asphalt based on molecular dynamics simulations[J].Construction and Building Materials,2022,349:128740. |
44 | Lu P, Ma Y, Ye K, et al. Analysis of high⁃temperature performance of polymer⁃modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022,350:128930. |
45 | 曹雪娟,苏玥,邓梅.基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J].化工新型材料,2021,49(09):234⁃239. |
CAO X J, SU Y, DENG M. Investigation on the interaction between polymer modifiers and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021,49(09):234⁃239. | |
46 | 徐业守,徐赵东,郭迎庆,等.基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J].东南大学学报(自然科学版),2021,51(03):365⁃370. |
XU Y S, ZHAO X D, GUO Y Q, et al. Mechanical behavior of natural rubber viscoelastic materials based on molecular dynamics simulation[J]. Journal of Southeast University(Natural Science Edition), 2021,51(03):365⁃370. | |
47 | Shi X Y, Bi W N, Zhao S G. Study on the damping of EVM based blends[J].Journal of Applied Polymer Science, 2011,120(2):1 121⁃1 125. |
48 | 杨瑞宁,吴丝竹,祝静,等.受阻酚/丁腈橡胶体系的阻尼性能及分子动力学模拟[J].高分子材料科学与工程,2018,34(12):36⁃44. |
YANG R N, WU S Z, ZHU J, et al. Damping peformance and molecular dynamics simulation of hindered phenol/nitrile butadiene rubber systems[J]. Polymer Materials Science & Engineering, 2018,34(12):36⁃44. | |
49 | 吴立康. 航空轮胎橡胶材料摩擦磨损实验与分子动力学模拟研究[D].北京:北京化工大学,2020. |
50 | 段信武. 橡胶复合材料高温磨耗特性研究[D].青岛: 青岛科技大学,2022. |
51 | 潘路奇,黄海波,张涛,等.CNT复合硫化丁苯橡胶摩擦特性分子动力学模拟[J].兵器材料科学与工程,2020,43(04):1⁃6. |
PAN L Q, HUANG H B, ZHANG T, et al. Molecular dynamics simulation of tribological properties of CNT compound styrene butadiene sulfide rubber[J]. Ordnance Material Science and Engineering, 2020,43(04):1⁃6. | |
52 | 唐黎明,王新楠,纪平,等.碳纳米管/丁腈橡胶复合材料力学及摩擦性能的分子动力学模拟[J].润滑与密封,2022,47(08):21⁃26. |
TANG L M, WANG X N, JI P, et al. Molecular dynamics simulation of mechanical and frictional properties of CNTs/ NBR composites[J]. Lubrication Engineering, 2022,47(08):21⁃26. | |
53 | 王吉忠,庄继德,李日春.轮胎胎面橡胶块与刚性路面摩擦接触数值分析[J].农业工程学报,1998(02):110⁃114. |
WANG J Z, ZHUANG J D, LI R C. Numerical analysis of friction contact between tire tread rubber block and rigid pavement[J]. Transactions of the Chinese Society of Agricultural Engineering,1998(02):110⁃114. | |
54 | 黄晓明,代琦,平克磊.轮胎胎面与柔性路面摩擦接触的数值分析[J].公路交通科技,2008(01):16⁃20. |
HUANG X M, DAI Q, PING K L. Numerical analysis of frictional contact between tire tread and flexible pavement[J]. Journal of Highway and Transportation Research and Development, 2008(01):16⁃20. | |
55 | 张彦辉. 胎面花纹对轮胎湿附着性能的影响及轮胎滚动特性研究[D].合肥:合肥工业大学,2007. |
56 | 刘修宇,曹青青,陈嘉颖,等.基于轮胎滑水与摩擦能量耗散的潮湿沥青路面车辆制动行为模拟(英文)[J].Journal of Southeast University (English Edition),2018,34(04):500⁃507. |
LIU X Y, CAO Q Q, CHEN J Y, et al. Simulation of vehicle braking behavior on wet asphalt pavement based on tire hydroplaning and friction energy dissipation[J]. Journal of Southeast University (English Edition),2018,34(04):500⁃507. | |
57 | 黄晓明,刘修宇,曹青青,等.积水路面轮胎部分滑水数值模拟[J].湖南大学学报(自然科学版),2018,45(09):113⁃121. |
HUANG X M, LIU X Y, CAO QQ, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018,45(09):113⁃121. | |
58 | Tang T C, Anupam K, Kasbergen C, et al. Finite element studies of skid resistance under hot weather condition[J].Transportation Research Record,2018,2 672(40): 382⁃394. |
59 | Sharma A K, Bouteldja M, Cerezo V. Multi⁃physical model for tyre⁃road contact⁃the effect of surface texture[J]. International Journal of Pavement Engineering, 2022, 23:755⁃772. |
60 | 巩丽. 天然橡胶摩擦磨损性能及机理研究[D].青岛:青岛科技大学, 2016. |
61 | 郝振源. 炭黑/天然橡胶复合材料的界面调控和耐磨性能研究[D].北京:北京化工大学,2023. |
62 | Kaliyathan A V, Rane A V, Huskic M, et al. Carbon black distribution in natural rubber/butadiene rubber blend composites: Distribution driven by morphology[J]. Composites Science and Technology, 2020, 200: 108484. |
63 | 刘全章,赵洪国,胡海华,等.表面改性白炭黑增强溶聚丁苯橡胶的性能[J].合成橡胶工业,2014,37(02):144⁃148. |
LIU Q Z, ZHAO H G, HU H H, et al. Properties of solution polymerized styrene⁃butadiene rubber reinforced with surface modified silica[J]. China Synthetic Rubber Industry, 2014,37(02):144⁃148. | |
64 | 李越,程文佳,刘明泰,等.碳纳米管改性氟橡胶的性能研究[J].中国塑料,2023,37(03):7⁃12. |
LI Y, CHENG W J, LIU M T, et al. Study on properties of carbon nanotubes modified fluoroelast0mers[J]. China Plastics, 2023,37(03):7⁃12. | |
65 | Teng F, Wu J, Su B L, et al. Enhanced adhesion friction behaviors of nature rubber composites by applications of carbon nanotube: Experiment and molecular insight[J].Tribology International 2023,181:108333. |
66 | Teng F, Wu J, Su B L, et al. Enhanced tribological properties of vulcanized natural rubber composites by applications of carbon nanotube: a molecular dynamics study[J]. Nanomaterials 2021,11(9): 11092464. |
67 | 陈保平,李志成,白艳英,等.改性碳纳米管对填充热解炭黑的SSBR/NR共混胶性能的影响[J].弹性体,2023,33(04):13⁃18. |
CHEN B P, LI Z C, BAI Y Y, et al. Effect of modified carbon nanotubes on the properties of SSBR/NR blends filled with pyrolytic carbon black[J]. China Elastomerics, 2023,33(04):13⁃18. | |
68 | 陈多礼,樊小强,张林,等.聚多巴胺改性碳纳米管增强羧基丁腈橡胶动态力学性能的研究[J].表面技术,2020,49(09):149⁃156. |
CHEN D L, FAN X Q, ZHANG L, et al. Dynamic mechanical properties of polydopamine modified ⁃walled carbon nanotubes reinforced[J]. Surface Technology, 2020,49(09):149⁃156. | |
69 | 唐黎明,纪平,王新楠,等.石墨烯/丁腈橡胶复合材料性能的分子动力学模拟[J].材料科学与工程学报,2023,41(03):509⁃513,526. |
TANG L M, JI P, WANG X N, et al. Molecular dynamics simulation of properties of graphene/NBR composites[J]. Journal of Materials Science and Engineering, 2023,41(03):509⁃513,526. | |
70 | Li Y, Wang Q, Wang T, et al. Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites[J]. Journal of Materials Science, 2012, 47(2): 730⁃738. |
71 | 仇柳,丁国新.氧化石墨烯改性及其在橡胶中的应用[J].应用化工,2019,48(08):1 970⁃1 973,1 984. |
QIU L, DING G X. Graphene oxide modification and its application in rubber[J]. Applied Chemical Industry, 2019,48(08):1 970⁃1 973,1 984. | |
72 | 高瑞丰,杨昕桥,蒋智威,等.偶联剂Si747改性氧化石墨烯/天然橡胶复合材料性能研究[J].特种橡胶制品,2022,43(02):1⁃7. |
GAO R F, YANG X Q, JIANG Z W, et al. Properties of coupling agent Si747 modified graphene oxide/natural rubber composites[J]. Special Purpose Rubber Products, 2022,43(02):1⁃7. | |
73 | 赵菲,黄琪伟,高洪娜,等.绿色轮胎原材料研究进展[J].科学通报,2016,61(31):3 348⁃3 358. |
ZHAO F, HUANG Q W, GAO H N, et al. Development of raw materials for green tire[J]. Chinese Science Bulletin, 2016,61(31):3 348⁃3 358. | |
74 | 李琬华,郝振源,刘昊北,等.热塑性聚氨酯/高乙烯基丁苯橡胶复合材料中纳米二氧化硅的分散状态及其摩擦性能研究[J].高分子学报,2023,54(03):390⁃397. |
LI W H, HAO Z Y, LIU H B, et al. Dispersion of nano⁃silica in thermoplastic polyurethane/high vinyl styrene butadiene rubber composites and analysis of friction properties[J]. Acta Polymerica Sinica, 2023,54(03):390⁃397. | |
75 | 田庆丰,唐源,刘亚兰,等.表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶⁃顺丁橡胶中的应用[J].复合材料学报,2020,37(07):1 703⁃1 712. |
TIAN Q F, TANG Y, LIU Y L, et al. Preparation of surface functionalized nano⁃SiO2 and its application in solution polymerization of styrene butadiene rubber⁃butadiene rubber[J]. Acta Materiae Compositae Sinica, ,2020,37(07):1 703⁃1 712. | |
76 | 刘超豪,李凡珠,马东利,等.环氧化溶聚丁苯橡胶用作大分子偶联剂改性白炭黑/顺丁橡胶复合材料的性能研究[J].橡胶工业,2023,70(10):765⁃772. |
LIU C H, LI F Z, MA D L, et al. Study on the properties of silica/BR composites modified by ESSBR as Macromolecular coupling agent[J]. China Rubber Industry, 2023,70(10):765⁃772. | |
77 | 张涛,王文良,鲁璐璐,等.改性石墨烯/黏土/天然橡胶纳米复合材料的结构与性能[J].山东化工,2021,50(05):25⁃28. |
ZHANG T, WANG W L, LU L L, et al. Structure and properties of modified graphene/clay/natural rubber nanocomposites[J]. Shandong Chemical Industry, 2021,50(05):25⁃28. | |
78 | 邓鹏,杨洋,郭荣鑫,等.石墨烯/多壁碳纳米管复配改性对天然橡胶复合材料应变传感性能的影响[J].高分子材料科学与工程,2023,39(06):146⁃153,159. |
DENG P, YANG Y, GUO R X, et al. Effect of composite modification of graphene/multi⁃wall carbon nanotubes on strain sensing properties of natural rubber composites[J]. Polymer Materials Science & Engineering, 2023,39(06):146⁃153,159. |
[1] | 张强, 张健, 林琳, 刘静, 王天贺. 相变储能微胶囊壁材传热强化措施研究进展[J]. 中国塑料, 2022, 36(7): 187-196. |
[2] | 刁晓倩, 翁云宣, 付烨, 周迎鑫. 生物降解塑料应用及性能评价方法综述[J]. 中国塑料, 2021, 35(8): 152-161. |
[3] | 杨睿, 苏正涛, 李红波, 赵文博. 石墨的取向对聚酰亚胺摩擦性能的影响[J]. 中国塑料, 2020, 34(5): 21-25. |
[4] | 胡法 张明志 孙晋 李玉娥 者东梅. 保温塑料复合管现状及技术要求[J]. 中国塑料, 2019, 33(7): 108-116. |
[5] | 杨睿 苏正涛. 石墨粒径对聚酰亚胺摩擦性能的影响[J]. 中国塑料, 2018, 32(04): 45-50. |
[6] | 王登武 王芳. 纳米氮化铝填充聚四氟乙烯复合材料的性能研究[J]. 中国塑料, 2013, 27(10): 27-31 . |
[7] | 徐伟华 韦春 吕建 苏乐 曾思华. 热致性液晶聚合物/酚醛树脂/氧化石墨烯混杂复合材料的性能研究[J]. 中国塑料, 2013, 27(05): 56-59 . |
[8] | 李玉娥 者东梅 武志军. 塑料管材耐氯性能评价现状[J]. 中国塑料, 2012, 26(07): 90-94 . |
[9] | 侯梅 寇开昌 张冬娜 蒋洋 李宁. 聚四氟乙烯/聚苯酯复合材料的结晶及摩擦性能研究[J]. 中国塑料, 2011, 25(10): 55-58 . |
[10] | 赵红. 聚乙烯管道焊接技术和评价方法[J]. 中国塑料, 2011, 25(07): 48-53 . |
[11] | 林宏伟 刘颖 吴大鸣. 用超声波检测方法评价注塑机螺杆混炼能力的研究[J]. 中国塑料, 2009, 23(10): 83-86 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||