
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (1): 92-99.DOI: 10.19491/j.issn.1001-9278.2022.01.014
收稿日期:
2021-06-21
出版日期:
2022-01-26
发布日期:
2022-01-21
作者简介:
张丁然(1997—),男,汉族,湖北荆门,在读硕士研究生,主要从事阻燃材料等相关研究,基金资助:
ZHANG Dingran1(), LU Lingang2(
)
Received:
2021-06-21
Online:
2022-01-26
Published:
2022-01-21
Contact:
LU Lingang
E-mail:deenran@163.com;llg@iccas.ac.cn
摘要:
运用热失重分析法对杯[8]芳烃和对叔丁基杯[8]芳烃氮气氛围下的热解状况与热解机理进行了探究,同时采用热分解动力学方法求解了二者热解过程对应的反应活化能和最优的机理函数方程。结果表明,对叔丁基杯[8]芳烃由于结构中的C—H σ键以及 C=C π键的强相互作用力,整体结构更为稳定,杯[8]芳烃具备优良的成炭性能,对叔丁基杯[8]芳烃具备优良的热稳定性能,二者的分解温度对于高分子材料的适应性较强;依照Kissinger方法和Flynn?Wall?Ozawa计算的杯[8]芳烃的反应活化能分别为179.14 kJ/mol和192.84 kJ/mol,对叔丁基杯[8]芳烃的反应活化能分别为291.61 kJ/mol和312.14 kJ/mol;依照Coats?Redfern方法计算的杯[8]芳烃的热解机理函数为g(α)=[-ln(1-α)]1/3,反应级数n=1/3,对应非等温热解机理为随机成核和随后生长反应,对叔丁基杯[8]芳烃的热解机理函数为g(α)=α1/3,反应级数n=1/3。
中图分类号:
张丁然, 卢林刚. 基于TG分析的杯[8]芳烃热解机理与动力学分析[J]. 中国塑料, 2022, 36(1): 92-99.
ZHANG Dingran, LU Lingang. Pyrolysis mechanism and kinetics of calixarene based on TG analysis[J]. China Plastics, 2022, 36(1): 92-99.
β/℃·min-1 | 材料类别 | T5 %/℃ | Tmax/℃ | Rmax/%·℃-1 |
---|---|---|---|---|
10 | 杯[ | 257.09 | 348.69 | 0.645 9 |
对叔丁基杯[ | 408.00 | 413.37 | 2.266 7 | |
20 | 杯[ | 266.79 | 360.58 | 0.544 0 |
对叔丁基杯[ | 410.07 | 421.40 | 1.571 5 | |
30 | 杯[ | 334.51 | 369.05 | 0.518 9 |
对叔丁基杯[ | 413.28 | 424.90 | 1.263 2 | |
40 | 杯[ | 303.50 | 372.00 | 0.482 0 |
对叔丁基杯[ | 414.13 | 432.14 | 0.857 1 |
β/℃·min-1 | 材料类别 | T5 %/℃ | Tmax/℃ | Rmax/%·℃-1 |
---|---|---|---|---|
10 | 杯[ | 257.09 | 348.69 | 0.645 9 |
对叔丁基杯[ | 408.00 | 413.37 | 2.266 7 | |
20 | 杯[ | 266.79 | 360.58 | 0.544 0 |
对叔丁基杯[ | 410.07 | 421.40 | 1.571 5 | |
30 | 杯[ | 334.51 | 369.05 | 0.518 9 |
对叔丁基杯[ | 413.28 | 424.90 | 1.263 2 | |
40 | 杯[ | 303.50 | 372.00 | 0.482 0 |
对叔丁基杯[ | 414.13 | 432.14 | 0.857 1 |
β/ ℃·min-1 | Tp/K | Tp-1/ ×10-3K-1 | ln(β/Tp2)/ K-1·min-1 | EK/ kJ·mol-1 |
---|---|---|---|---|
10 | 621.70 | 1.609 | -10.562 | 179.14 |
20 | 633.59 | 1.578 | -9.907 | |
30 | 642.05 | 1.558 | -9.528 | |
40 | 645.00 | 1.550 | -9.250 |
β/ ℃·min-1 | Tp/K | Tp-1/ ×10-3K-1 | ln(β/Tp2)/ K-1·min-1 | EK/ kJ·mol-1 |
---|---|---|---|---|
10 | 621.70 | 1.609 | -10.562 | 179.14 |
20 | 633.59 | 1.578 | -9.907 | |
30 | 642.05 | 1.558 | -9.528 | |
40 | 645.00 | 1.550 | -9.250 |
β/ ℃·min-1 | Tp/K | Tp-1/ ×10-3K-1 | ln(β/Tp2)/ K-1·min-1 | EK/ kJ·mol-1 |
---|---|---|---|---|
10 | 686.38 | 1.457 | -10.760 | 291.61 |
20 | 694.41 | 1.440 | -10.090 | |
30 | 697.90 | 1.433 | -9.695 | |
40 | 705.14 | 1.418 | -9.428 |
β/ ℃·min-1 | Tp/K | Tp-1/ ×10-3K-1 | ln(β/Tp2)/ K-1·min-1 | EK/ kJ·mol-1 |
---|---|---|---|---|
10 | 686.38 | 1.457 | -10.760 | 291.61 |
20 | 694.41 | 1.440 | -10.090 | |
30 | 697.90 | 1.433 | -9.695 | |
40 | 705.14 | 1.418 | -9.428 |
α | SD | r | E/kJ·mol-1 |
---|---|---|---|
0.1 | 0.002 1 | 0.989 7 | 172.25 |
0.2 | 0.001 3 | 0.993 4 | 197.59 |
0.3 | 0.000 2 | 0.999 0 | 184.24 |
0.4 | 0.001 9 | 0.999 1 | 195.62 |
0.5 | 0.001 1 | 0.999 9 | 199.93 |
0.6 | 0.000 4 | 0.999 8 | 198.75 |
0.7 | 0.000 5 | 0.997 4 | 195.12 |
0.8 | 0.001 3 | 0.993 3 | 199.24 |
α | SD | r | E/kJ·mol-1 |
---|---|---|---|
0.1 | 0.002 1 | 0.989 7 | 172.25 |
0.2 | 0.001 3 | 0.993 4 | 197.59 |
0.3 | 0.000 2 | 0.999 0 | 184.24 |
0.4 | 0.001 9 | 0.999 1 | 195.62 |
0.5 | 0.001 1 | 0.999 9 | 199.93 |
0.6 | 0.000 4 | 0.999 8 | 198.75 |
0.7 | 0.000 5 | 0.997 4 | 195.12 |
0.8 | 0.001 3 | 0.993 3 | 199.24 |
α | SD | r | E/kJ·mol-1 |
---|---|---|---|
0.1 | 0.003 2 | 0.998 4 | 293.27 |
0.2 | 0.001 0 | 0.995 0 | 296.12 |
0.3 | 0.002 8 | 0.998 6 | 333.12 |
0.4 | 0.001 2 | 0.999 4 | 315.18 |
0.5 | 0.001 9 | 0.999 9 | 312.30 |
0.6 | 0.001 5 | 0.992 2 | 307.11 |
0.7 | 0.002 0 | 0.990 2 | 333.61 |
0.8 | 0.005 0 | 0.975 2 | 306.40 |
α | SD | r | E/kJ·mol-1 |
---|---|---|---|
0.1 | 0.003 2 | 0.998 4 | 293.27 |
0.2 | 0.001 0 | 0.995 0 | 296.12 |
0.3 | 0.002 8 | 0.998 6 | 333.12 |
0.4 | 0.001 2 | 0.999 4 | 315.18 |
0.5 | 0.001 9 | 0.999 9 | 312.30 |
0.6 | 0.001 5 | 0.992 2 | 307.11 |
0.7 | 0.002 0 | 0.990 2 | 333.61 |
0.8 | 0.005 0 | 0.975 2 | 306.40 |
序号 | 微分形式机理函数f(α) | 积分形式机理函数g(α) | 机理 |
---|---|---|---|
1 | f(α)=4α3/4 | g(α)=α1/4 | n=1/4 |
2 | f(α)=3α2/3 | g(α)=α1/3 | n=1/3 |
3 | f(α)=2α1/2 | g(α)=α1/2 | n=1/2 |
4 | f(α)=1 | g(α)=α | 相边界反应(一维), R1, n=1 |
5 | f(α)=1/2α-1 | g(α)=α2 | 一维扩散, 1D, 减速形a?t曲线 |
6 | f(α)=2/3α-1/2 | g(α)=α3/2 | n=3/2 |
7 | f(α)=[-ln(1-α)]-1 | g(α)=α+(1-α)ln(1-α) | 二维扩散, 2D, 减速形a?t曲线 |
8 | f(α)=3/2[(1-α)-1/3-1]-1 | g(α)=1-2α/3-(1-α)2/3 | 三维扩散, 3D, 圆柱形对称, 减速形a?t曲线 |
9 | f(α)=2(1-α)[-ln(1-α)]1/2(n=1/2) | g(α)=[-ln(1-α)]1/2(n=1/2) | 随机成核和随后生长,S形a?t曲线, n=1/2 |
10 | f(α)=4(1-α)[-ln(1-α)]3/4(n=1/4) | g(α)=[-ln(1-α)]1/4(n=1/4) | 随机成核和随后生长, S形a?t曲线, n=1/4 |
11 | f(α)=3(1-α)[-ln(1-α)]2/3(n=1/3) | g(α)=[-ln(1-α)]1/3(n=1/3) | 随机成核和随后生长, S形a?t曲线, n=1/3 |
12 | f(α)=5/2(1-α)[-ln(1-α)]3/5(n=2/5) | g(α)=[-ln(1-α)]2/5(n=2/5) | 随机成核和随后生长, n=2/5 |
13 | f(α)=3/2(1-α)[-ln(1-α)]1/3(n=2/3) | g(α)=[-ln(1-α)]2/3(n=2/3) | 随机成核和随后生长, n=2/3 |
14 | f(α)=4/3(1-α)[-ln(1-α)]1/4(n=3/4) | g(α)=[-ln(1-α)]3/4(n=3/4) | 随机成核和随后生长, n=3/4 |
15 | f(α)=1-α(n=1) | g(α)=-ln(1-α)(n=1) | 随机成核和随后生长, S形a?t曲线, n=1 |
16 | f(α)=2/3(1-α)[-ln(1-α)]-1/2(n=3/2) | g(α)=[-ln(1-α)]3/2(n=3/2) | 随机成核和随后生长, n=3/2 |
17 | f(α)=1/2(1-α)[-ln(1-α)]-1(n=2) | g(α)=[-ln(1-α)]2(n=2) | 随机成核和随后生长, n=2 |
18 | f(α)=1/3(1-α)[-ln(1-α)]-2(n=3) | g(α)=[-ln(1-α)]3(n=3) | 随机成核和随后生长,n= 3 |
19 | f(α)=1/4(1-α)[-ln(1-α)]-3(n=4) | g(α)=[-ln(1-α)]4(n=4) | 随机成核和随后生长,n= 4 |
20 | f(α)=4(1-α)3/4 | g(α)=1-(1-α)1/4 | n= 1/4 |
21 | f(α)=3(1-α)2/3 | g(α)=1-(1-α)1/3 | 相边界反应, 球形对称, 减速形a?t曲线,n=1/3 |
22 | f(α)=2(1-α)1/2 | g(α)=1-(1-α)1/2 | 相边界反应, 圆柱形对称, 减速形a?t曲线,n= 1/2 |
23 | f(α)=1/2(1-α)-1(n=2) | g(α)=1-(1-α)2(n=2) | n=2 |
24 | f(α)=1/3(1-α)-2(n=3) | g(α)=1-(1-α)3(n=3) | n=3 |
25 | f(α)=1/4(1-α)-3(n=4) | g(α)=1-(1-α)4(n=4) | n=4 |
26 | f(α)=(1-α)2 | g(α)=(1-α)-1 | 化学反应, 减速形a?t曲线 |
27 | f(α)=(1-α)2 | g(α)=(1-α)-1-1 | 化学反应 |
28 | f(α)=2(1-α)3/2 | g(α)=(1-α)-1/2 | 化学反应 |
29 | f(α)=1/2(1-α)3 | g(α)=(1-α)-2 | 化学反应, 减速形a?t曲线 |
30 | f(α)=4(1-α)1/2[1-(1-α)1/2]1/2 | g(α)=[1-(1-α)1/2]1/2 | 二维扩散, 2D, n=1/2 |
31 | f(α)=(1-α)1/2[1-(1-α)1/2]-1 | g(α)=[1-(1-α)1/2]2 | 二维扩散, 2D, n=2 |
32 | f(α)=6(1-α)2/3[1-(1-α)1/3]1/2 | g(α)=[1-(1-α)1/3]1/2 | 三维扩散, 3D, n=1/2 |
33 | f(α)=3/2(1-α)2/3[1-(1-α)1/3]-1 | g(α)=[1-(1-α)1/3]2 | 三维扩散, 3D, 球形对称, 减速形a?t曲线, n=2 |
34 | f(α)=3/2(1+α)2/3[(1+α)1/3-1]-1 | g(α)=[(1+α)1/3-1]2 | 三维扩散, 3D, n=2 |
序号 | 微分形式机理函数f(α) | 积分形式机理函数g(α) | 机理 |
---|---|---|---|
1 | f(α)=4α3/4 | g(α)=α1/4 | n=1/4 |
2 | f(α)=3α2/3 | g(α)=α1/3 | n=1/3 |
3 | f(α)=2α1/2 | g(α)=α1/2 | n=1/2 |
4 | f(α)=1 | g(α)=α | 相边界反应(一维), R1, n=1 |
5 | f(α)=1/2α-1 | g(α)=α2 | 一维扩散, 1D, 减速形a?t曲线 |
6 | f(α)=2/3α-1/2 | g(α)=α3/2 | n=3/2 |
7 | f(α)=[-ln(1-α)]-1 | g(α)=α+(1-α)ln(1-α) | 二维扩散, 2D, 减速形a?t曲线 |
8 | f(α)=3/2[(1-α)-1/3-1]-1 | g(α)=1-2α/3-(1-α)2/3 | 三维扩散, 3D, 圆柱形对称, 减速形a?t曲线 |
9 | f(α)=2(1-α)[-ln(1-α)]1/2(n=1/2) | g(α)=[-ln(1-α)]1/2(n=1/2) | 随机成核和随后生长,S形a?t曲线, n=1/2 |
10 | f(α)=4(1-α)[-ln(1-α)]3/4(n=1/4) | g(α)=[-ln(1-α)]1/4(n=1/4) | 随机成核和随后生长, S形a?t曲线, n=1/4 |
11 | f(α)=3(1-α)[-ln(1-α)]2/3(n=1/3) | g(α)=[-ln(1-α)]1/3(n=1/3) | 随机成核和随后生长, S形a?t曲线, n=1/3 |
12 | f(α)=5/2(1-α)[-ln(1-α)]3/5(n=2/5) | g(α)=[-ln(1-α)]2/5(n=2/5) | 随机成核和随后生长, n=2/5 |
13 | f(α)=3/2(1-α)[-ln(1-α)]1/3(n=2/3) | g(α)=[-ln(1-α)]2/3(n=2/3) | 随机成核和随后生长, n=2/3 |
14 | f(α)=4/3(1-α)[-ln(1-α)]1/4(n=3/4) | g(α)=[-ln(1-α)]3/4(n=3/4) | 随机成核和随后生长, n=3/4 |
15 | f(α)=1-α(n=1) | g(α)=-ln(1-α)(n=1) | 随机成核和随后生长, S形a?t曲线, n=1 |
16 | f(α)=2/3(1-α)[-ln(1-α)]-1/2(n=3/2) | g(α)=[-ln(1-α)]3/2(n=3/2) | 随机成核和随后生长, n=3/2 |
17 | f(α)=1/2(1-α)[-ln(1-α)]-1(n=2) | g(α)=[-ln(1-α)]2(n=2) | 随机成核和随后生长, n=2 |
18 | f(α)=1/3(1-α)[-ln(1-α)]-2(n=3) | g(α)=[-ln(1-α)]3(n=3) | 随机成核和随后生长,n= 3 |
19 | f(α)=1/4(1-α)[-ln(1-α)]-3(n=4) | g(α)=[-ln(1-α)]4(n=4) | 随机成核和随后生长,n= 4 |
20 | f(α)=4(1-α)3/4 | g(α)=1-(1-α)1/4 | n= 1/4 |
21 | f(α)=3(1-α)2/3 | g(α)=1-(1-α)1/3 | 相边界反应, 球形对称, 减速形a?t曲线,n=1/3 |
22 | f(α)=2(1-α)1/2 | g(α)=1-(1-α)1/2 | 相边界反应, 圆柱形对称, 减速形a?t曲线,n= 1/2 |
23 | f(α)=1/2(1-α)-1(n=2) | g(α)=1-(1-α)2(n=2) | n=2 |
24 | f(α)=1/3(1-α)-2(n=3) | g(α)=1-(1-α)3(n=3) | n=3 |
25 | f(α)=1/4(1-α)-3(n=4) | g(α)=1-(1-α)4(n=4) | n=4 |
26 | f(α)=(1-α)2 | g(α)=(1-α)-1 | 化学反应, 减速形a?t曲线 |
27 | f(α)=(1-α)2 | g(α)=(1-α)-1-1 | 化学反应 |
28 | f(α)=2(1-α)3/2 | g(α)=(1-α)-1/2 | 化学反应 |
29 | f(α)=1/2(1-α)3 | g(α)=(1-α)-2 | 化学反应, 减速形a?t曲线 |
30 | f(α)=4(1-α)1/2[1-(1-α)1/2]1/2 | g(α)=[1-(1-α)1/2]1/2 | 二维扩散, 2D, n=1/2 |
31 | f(α)=(1-α)1/2[1-(1-α)1/2]-1 | g(α)=[1-(1-α)1/2]2 | 二维扩散, 2D, n=2 |
32 | f(α)=6(1-α)2/3[1-(1-α)1/3]1/2 | g(α)=[1-(1-α)1/3]1/2 | 三维扩散, 3D, n=1/2 |
33 | f(α)=3/2(1-α)2/3[1-(1-α)1/3]-1 | g(α)=[1-(1-α)1/3]2 | 三维扩散, 3D, 球形对称, 减速形a?t曲线, n=2 |
34 | f(α)=3/2(1+α)2/3[(1+α)1/3-1]-1 | g(α)=[(1+α)1/3-1]2 | 三维扩散, 3D, n=2 |
g(α)机理函数序号 | β/℃·min-1 | EC/kJ·mol-1 | r | SD | lg(AC/s-1) | |(EO-EC)/EO| | |(lgAC-lgAK)/lgAK| |
---|---|---|---|---|---|---|---|
11 | 10 | 274.63 | 0.980 7 | 0.010 6 | 23.401 8 | 0.424 1 | 0.481 1 |
12 | 10 | 331.58 | 0.980 9 | 0.015 2 | 28.347 1 | 0.719 4 | 0.794 1 |
30 | 10 | 376.64 | 0.970 5 | 0.029 1 | 32.042 2 | 0.953 1 | 1.028 0 |
32 | 10 | 390.97 | 0.974 3 | 0.027 0 | 33.215 0 | 1.027 4 | 1.102 2 |
11 | 20 | 204.92 | 0.982 8 | 0.009 5 | 17.397 8 | 0.062 6 | 0.101 1 |
12 | 20 | 247.93 | 0.983 1 | 0.013 7 | 21.109 7 | 0.285 7 | 0.336 1 |
30 | 20 | 285.83 | 0.980 4 | 0.026 5 | 24.162 0 | 0.482 2 | 0.529 2 |
32 | 20 | 295.76 | 0.980 6 | 0.024 5 | 24.947 4 | 0.533 7 | 0.578 9 |
11 | 30 | 300.65 | 0.982 4 | 0.005 4 | 25.617 2 | 0.559 0 | 0.621 3 |
12 | 30 | 362.84 | 0.982 6 | 0.007 8 | 30.906 1 | 0.881 6 | 0.956 1 |
30 | 30 | 399.43 | 0.971 4 | 0.015 9 | 33.801 2 | 1.071 3 | 1.139 3 |
32 | 30 | 425.00 | 0.980 4 | 0.014 3 | 35.905 5 | 1.203 9 | 1.272 5 |
11 | 40 | 257.38 | 0.982 8 | 0.003 9 | 21.501 6 | 0.334 7 | 0.360 9 |
12 | 40 | 310.98 | 0.983 1 | 0.005 6 | 25.960 9 | 0.612 6 | 0.643 1 |
30 | 40 | 329.09 | 0.980 4 | 0.011 7 | 27.248 8 | 0.706 5 | 0.724 6 |
32 | 40 | 357.79 | 0.980 6 | 0.010 8 | 29.567 9 | 0.855 4 | 0.871 4 |
g(α)机理函数序号 | β/℃·min-1 | EC/kJ·mol-1 | r | SD | lg(AC/s-1) | |(EO-EC)/EO| | |(lgAC-lgAK)/lgAK| |
---|---|---|---|---|---|---|---|
11 | 10 | 274.63 | 0.980 7 | 0.010 6 | 23.401 8 | 0.424 1 | 0.481 1 |
12 | 10 | 331.58 | 0.980 9 | 0.015 2 | 28.347 1 | 0.719 4 | 0.794 1 |
30 | 10 | 376.64 | 0.970 5 | 0.029 1 | 32.042 2 | 0.953 1 | 1.028 0 |
32 | 10 | 390.97 | 0.974 3 | 0.027 0 | 33.215 0 | 1.027 4 | 1.102 2 |
11 | 20 | 204.92 | 0.982 8 | 0.009 5 | 17.397 8 | 0.062 6 | 0.101 1 |
12 | 20 | 247.93 | 0.983 1 | 0.013 7 | 21.109 7 | 0.285 7 | 0.336 1 |
30 | 20 | 285.83 | 0.980 4 | 0.026 5 | 24.162 0 | 0.482 2 | 0.529 2 |
32 | 20 | 295.76 | 0.980 6 | 0.024 5 | 24.947 4 | 0.533 7 | 0.578 9 |
11 | 30 | 300.65 | 0.982 4 | 0.005 4 | 25.617 2 | 0.559 0 | 0.621 3 |
12 | 30 | 362.84 | 0.982 6 | 0.007 8 | 30.906 1 | 0.881 6 | 0.956 1 |
30 | 30 | 399.43 | 0.971 4 | 0.015 9 | 33.801 2 | 1.071 3 | 1.139 3 |
32 | 30 | 425.00 | 0.980 4 | 0.014 3 | 35.905 5 | 1.203 9 | 1.272 5 |
11 | 40 | 257.38 | 0.982 8 | 0.003 9 | 21.501 6 | 0.334 7 | 0.360 9 |
12 | 40 | 310.98 | 0.983 1 | 0.005 6 | 25.960 9 | 0.612 6 | 0.643 1 |
30 | 40 | 329.09 | 0.980 4 | 0.011 7 | 27.248 8 | 0.706 5 | 0.724 6 |
32 | 40 | 357.79 | 0.980 6 | 0.010 8 | 29.567 9 | 0.855 4 | 0.871 4 |
g(α)机理函数序号 | β/℃·min-1 | EC/kJ·mol-1 | r | SD | lg(AC/s-1) | |(EO-EC)/EO| | |(lgAC-lgAK)/lgAK| |
---|---|---|---|---|---|---|---|
1 | 10 | 418.86 | 0.987 2 | 0.001 7 | 31.878 3 | 0.341 9 | 0.443 1 |
2 | 10 | 562.27 | 0.987 4 | 0.003 0 | 42.911 2 | 0.801 3 | 0.942 6 |
3 | 10 | 849.10 | 0.987 6 | 0.006 8 | 64.900 4 | 1.720 2 | 1.938 0 |
1 | 20 | 248.05 | 0.988 0 | 0.004 1 | 10.838 3 | 0.205 3 | 0.509 4 |
2 | 20 | 334.54 | 0.988 3 | 0.007 2 | 14.838 7 | 0.071 8 | 0.328 3 |
3 | 20 | 507.51 | 0.988 5 | 0.016 3 | 22.760 7 | 0.625 9 | 0.030 4 |
1 | 30 | 185.17 | 0.983 5 | 0.008 2 | 13.996 8 | 0.406 8 | 0.366 4 |
2 | 30 | 250.70 | 0.984 0 | 0.014 6 | 19.032 7 | 0.196 8 | 0.138 4 |
3 | 30 | 381.75 | 0.984 5 | 0.032 7 | 29.024 0 | 0.223 0 | 0.313 9 |
1 | 40 | 153.07 | 0.993 5 | 0.003 3 | 11.615 3 | 0.509 6 | 0.474 2 |
2 | 40 | 207.87 | 0.993 7 | 0.005 9 | 15.843 6 | 0.334 0 | 0.282 8 |
3 | 40 | 317.49 | 0.993 9 | 0.013 2 | 24.218 2 | 0.017 1 | 0.096 3 |
g(α)机理函数序号 | β/℃·min-1 | EC/kJ·mol-1 | r | SD | lg(AC/s-1) | |(EO-EC)/EO| | |(lgAC-lgAK)/lgAK| |
---|---|---|---|---|---|---|---|
1 | 10 | 418.86 | 0.987 2 | 0.001 7 | 31.878 3 | 0.341 9 | 0.443 1 |
2 | 10 | 562.27 | 0.987 4 | 0.003 0 | 42.911 2 | 0.801 3 | 0.942 6 |
3 | 10 | 849.10 | 0.987 6 | 0.006 8 | 64.900 4 | 1.720 2 | 1.938 0 |
1 | 20 | 248.05 | 0.988 0 | 0.004 1 | 10.838 3 | 0.205 3 | 0.509 4 |
2 | 20 | 334.54 | 0.988 3 | 0.007 2 | 14.838 7 | 0.071 8 | 0.328 3 |
3 | 20 | 507.51 | 0.988 5 | 0.016 3 | 22.760 7 | 0.625 9 | 0.030 4 |
1 | 30 | 185.17 | 0.983 5 | 0.008 2 | 13.996 8 | 0.406 8 | 0.366 4 |
2 | 30 | 250.70 | 0.984 0 | 0.014 6 | 19.032 7 | 0.196 8 | 0.138 4 |
3 | 30 | 381.75 | 0.984 5 | 0.032 7 | 29.024 0 | 0.223 0 | 0.313 9 |
1 | 40 | 153.07 | 0.993 5 | 0.003 3 | 11.615 3 | 0.509 6 | 0.474 2 |
2 | 40 | 207.87 | 0.993 7 | 0.005 9 | 15.843 6 | 0.334 0 | 0.282 8 |
3 | 40 | 317.49 | 0.993 9 | 0.013 2 | 24.218 2 | 0.017 1 | 0.096 3 |
1 | GUTSCHE C D. Calixarenes:an introduction[M]. RSC Pub,2008:18⁃26. |
2 | 龚淑玲,胡才仲,王 巍,等.杯芳烃交联聚硅氧烷热稳定性能研究[J].高分子学报,2006(1):180⁃184. |
GONG S L, HU C Z, WANG W,et al. Thermal stability of calixarene crosslinked polysiloxane[J]. Acta polymer Sinica,2006(1):180⁃184. | |
3 | ZADMARD R, HOKMABADI F, JALALI M R, et al. Recent progress to construct calixarene⁃based polymers using covalent bonds: synthesis and applications[J].RSC Advances, 2020, 10(54): 32 690⁃32 722. |
4 | 冯亚青,洪学传,李熙凤,等.对⁃叔丁基杯[4]芳烃对聚丙烯热氧稳定性的影响及其动力学研究[J].高等学校化学学报,2001(3):485⁃488. |
FENG Y Q, HONG X C, LI X F,et al. Effect of p⁃tert⁃butylcalix [4] arene on thermal oxidative stability of polypropylene and its kinetics[J]. Journal of chemistry of colleges and Universities, 2001(3):485⁃488. | |
5 | QIAN X D, ZHENG K S, LU L G, et al.A novel flame retardant containing calixarene and DOPO structures: Pre⁃paration and its application on the fire safety of polystyrene[J]. Polymers for advanced technologies, 2018 (29):2 715⁃2 723. |
6 | LAZZAROTTO M, NACHTIGALL F F , SCHNITZLER E , et al. Thermo gravimetric analysis of supramolecular complexes of p⁃tert⁃butylcalix[6]arene and ammonium cations: crystal structure of diethylammonium complex[J]. Thermochimica Acta, 2005, 429(1):111⁃117. |
7 | MARYAM S M, NIKJE M M A, RASOULI⁃SANIABAD M, et al. Synthesis and Characterization of Functionalized Calix[4]arene Derivatives and Preparation of Ri⁃gid Polyurethane Foams by the Incorporation of Calixarene[J]. Macromolecular Symposia, 2017, 373(1):1600101. |
8 | NISHIKUBO T, KAMEYAMA A, KUDO H. Novel high performance materials. calixarene derivatives containing protective groups and polymerizable groups for photolithography, and calixarene derivatives containing active ester groups for thermal curing of epoxy resins[J]. Polymer Journal, 2003, 35(3): 213⁃229. |
9 | GALINDO⁃GARCIA U , TORRES L A. Crystal structure at the origin of the thermal stability and large enthalpy of fusion and sublimation values of calixarenes[J]. Crystal Growth & Design, 2020, 20(2):1 302⁃1 310. |
10 | 胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社, 2001:99⁃101 |
11 | 刘振海, 张洪林. 分析化学手册. 第8分册, 热分析与量热学[M]. 化学工业出版社, 2012:23⁃26. |
12 | 杨志骅.对叔丁基杯芳烃对聚丙烯性能的研究[J].塑料工业,2011,39(7):107⁃110. |
YANG Z H. Effect of p⁃tert⁃butyl calixarene on properties of polypropylene[J]. Plastics Industry, 2011,39(7):107⁃110. | |
13 | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1 702⁃1 706. |
14 | OZAWA T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn, 1965, 38(11):1 881⁃1 886. |
15 | COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201:68⁃69. |
[1] | 汤元君, 李璇, 董隽, 李国能, 罗冠群, 王卫民, 许友生. 废弃PVC塑料热解过程多尺度反应动力学特性研究[J]. 中国塑料, 2022, 36(5): 89-98. |
[2] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
[3] | 刘振, 余云, 张孟航, 尹浏烨, 段雨霏, 侯桂香. 没食子酸环氧树脂/蓖麻油酸多胺体系固化动力学及性能[J]. 中国塑料, 2022, 36(2): 75-81. |
[4] | 王晓东, 花蕾, 董爱娟, 罗李华. 基于热失重分析对聚合物发泡剂ADC发气量测定方法的研究[J]. 中国塑料, 2022, 36(1): 142-147. |
[5] | 张丁然, 卢林刚. 杯[4]芳烃的热分解动力学研究[J]. 中国塑料, 2021, 35(9): 27-33. |
[6] | 矫佳利, 杨卫民, 高晓东, 宋立健, 丁玉梅, 程礼盛. 回收聚乙烯模板法制备碳纤维的机理分析[J]. 中国塑料, 2021, 35(8): 94-99. |
[7] | 冯喜平, 张盛源, 梁群, 王博. 热塑性树脂基复合材料激光原位固化研究进展[J]. 中国塑料, 2021, 35(6): 111-124. |
[8] | 刘润清, 邢明明, 黄继明. PET在油茶壳炭C⁃SO3H基固体酸催化剂下的液化行为研究[J]. 中国塑料, 2021, 35(3): 105-111. |
[9] | 蔡恒芳, 孙玲. 注射成型发泡过程中温度和剪切速率对CO2扩散行为影响的分子动力学研究[J]. 中国塑料, 2021, 35(3): 83-89. |
[10] | 彭新龙, 曾宇清, 梁卓恩, 谢忆. 环氧树脂/玻璃纤维模压预浸料固化反应动力学研究[J]. 中国塑料, 2021, 35(12): 81-87. |
[11] | 张丁然, 卢林刚. 杯[6]芳烃热解及热动力学特性分析[J]. 中国塑料, 2021, 35(11): 104-110. |
[12] | 何芬芬, 林庆文, 刘玲, 岳海玲. 热解气氛对油漆稀料和塑料共热解特性的影响[J]. 中国塑料, 2021, 35(11): 32-37. |
[13] | 鲁玉鑫, 卢林刚. 茶多酚的成炭性能及热分解动力学研究[J]. 中国塑料, 2021, 35(10): 108-113. |
[14] | 李韶缘, 孙玲, 蔡恒芳. CO2和O2在聚乳酸/聚偏二氟乙烯共混物中扩散行为的分子动力学模拟研究[J]. 中国塑料, 2021, 35(10): 51-55. |
[15] | 李彦晓, 张岩, 何雪莲. 超声辅助双螺杆机制备高密度聚乙烯/超高分子量聚乙烯复合材料及性能研究[J]. 中国塑料, 2020, 34(8): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||