
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (2): 90-100.DOI: 10.19491/j.issn.1001-9278.2023.02.013
杨敏1(), 王莹1, 陈蕾1, 马惠芳1, 闫桂焕2, 王文语1(
)
收稿日期:
2022-11-16
出版日期:
2023-02-26
发布日期:
2023-02-22
通讯作者:
王文语(1992—),女,讲师,从事水污染控制及资源化利用研究,qluwwy@126.com作者简介:
杨敏(1997—),男,在读硕士研究生,从事微塑料污染控制及资源化利用研究,18863097127@163.com
基金资助:
YANG Min1(), WANG Ying1, CHEN Lei1, MA Huifang1, YAN Guihuan2, WANG Wenyu1(
)
Received:
2022-11-16
Online:
2023-02-26
Published:
2023-02-22
Contact:
WANG Wenyu
E-mail:18863097127@163.com;qluwwy@126.com
摘要:
阐述了微塑料的来源、分布以及迁移转化过程,分析评价了微塑料的毒性效应,探讨了混凝、高级氧化及膜生物反应器技术去除微塑料的研究进展。通过论述,揭示水环境中微塑料对生态系统造成的潜在风险以及对人类健康的威胁,提出目前微塑料去除技术的优势和不足,并为今后微塑料的研究做出建议和展望。
中图分类号:
杨敏, 王莹, 陈蕾, 马惠芳, 闫桂焕, 王文语. 水中微塑料污染及转化去除的研究进展[J]. 中国塑料, 2023, 37(2): 90-100.
YANG Min, WANG Ying, CHEN Lei, MA Huifang, YAN Guihuan, WANG Wenyu. Research progress in microplastic pollution, transformation, and removal from water[J]. China Plastics, 2023, 37(2): 90-100.
地区 | 微塑料主要类型 | 检测方法 | 丰度 | 参考文献 |
---|---|---|---|---|
三峡(中国) | PS、PP、PE | 拉曼光谱 | 1 597~12 611 个/m3 | [ |
长江武汉段(中国) | PET、PP | 红外光谱(FTIR) | (2 516.7±911.7)个/m3 | [ |
汉江(中国) | PET、PP | FTIR | (2 933±305.5)个/m3 | [ |
太湖(中国) | PET、PP、PE | μ⁃FTIRa、SEMb | 3.4~25.8 个/L | [ |
黄河下游河口(中国) | PE、PP、PS | FTIR、SEM | 380~582 个/m3 | [ |
珠江(中国) | PE、PP | μ⁃FTIR | 379~7 924 个/m3 | [ |
青藏高原河流(中国) | PET、PE、PP、PS、PA | 拉曼光谱 | 483~967 个/m3 | [ |
泗水(印度尼西亚) | 低密度聚乙烯(PE⁃LD)、PP、PE | FTIR | 1.47~43.11 个/m3 | [ |
安图亚河(葡萄牙) | PE、PP | ATR⁃FTIRc | 5~51.7 mg/m3 | [ |
巴生河(马来西亚) | PA、PE | ATR⁃FTIR | 0.5~4.5 个/L | [ |
湄南河(曼谷) | PP、PE、PS | FTIR | 805.20 mg/m3 | [ |
马尼拉湾五个河口(菲律宾) | PP、PE、PS | FTIR | 1 580~57 665个/m3 | [ |
地区 | 微塑料主要类型 | 检测方法 | 丰度 | 参考文献 |
---|---|---|---|---|
三峡(中国) | PS、PP、PE | 拉曼光谱 | 1 597~12 611 个/m3 | [ |
长江武汉段(中国) | PET、PP | 红外光谱(FTIR) | (2 516.7±911.7)个/m3 | [ |
汉江(中国) | PET、PP | FTIR | (2 933±305.5)个/m3 | [ |
太湖(中国) | PET、PP、PE | μ⁃FTIRa、SEMb | 3.4~25.8 个/L | [ |
黄河下游河口(中国) | PE、PP、PS | FTIR、SEM | 380~582 个/m3 | [ |
珠江(中国) | PE、PP | μ⁃FTIR | 379~7 924 个/m3 | [ |
青藏高原河流(中国) | PET、PE、PP、PS、PA | 拉曼光谱 | 483~967 个/m3 | [ |
泗水(印度尼西亚) | 低密度聚乙烯(PE⁃LD)、PP、PE | FTIR | 1.47~43.11 个/m3 | [ |
安图亚河(葡萄牙) | PE、PP | ATR⁃FTIRc | 5~51.7 mg/m3 | [ |
巴生河(马来西亚) | PA、PE | ATR⁃FTIR | 0.5~4.5 个/L | [ |
湄南河(曼谷) | PP、PE、PS | FTIR | 805.20 mg/m3 | [ |
马尼拉湾五个河口(菲律宾) | PP、PE、PS | FTIR | 1 580~57 665个/m3 | [ |
毒性作用 | 微塑料特征 | 微塑料粒径 | 病理学变化 | 参考文献 |
---|---|---|---|---|
发炎 | 荧光和原始PS颗粒 | 5 、20 μm | 诱发肝脏炎症;对神经传递诱发副作用 | [ |
未改性/羧基化PS颗粒 | 20、44、500、1 000 nm | 白介素⁃6和白介素⁃8表达上调;多种人类恶性肿瘤的炎症增强 | [ | |
羧基和氨基改性的PS颗粒 | 120 nm | 清道夫受体表达改变;M2巨噬细胞增加了白介素⁃10的产生 | [ | |
PS颗粒 | 202、535 nm | A549上皮细胞的白介素⁃8表达上调;人A549肺细胞诱发炎症 | [ | |
氧化应激与细胞凋亡 | PVC和聚甲基丙烯酸甲酯颗粒 | 120、140 nm | 细胞活力降低;三磷酸腺苷(ATP)减少;活性氧(ROS)浓度增加 | [ |
胺改性PS颗粒 | 60 nm | 与黏蛋白具有很强的相互作用和聚集性;诱导所有肠上皮细胞凋亡 | [ | |
未改性或改性的PS颗粒 | 50、100 nm | 诱导人体细胞的凋亡 | [ | |
代谢稳态 | 荧光和原始PS颗粒 | 5 μm | 诱导肠道微生物菌群生态失调、肠道屏障功能障碍和代谢紊乱 | [ |
PS颗粒 | 0.5、5、20、50 μm | 能量和脂质代谢紊乱 | [ | |
PS颗粒 | 30 nm | 阻断囊泡运输和细胞分裂相关蛋白的分布 | [ | |
带负电荷的PS颗粒 | 20 nm | 改变离子通道功能和离子稳态 | [ |
毒性作用 | 微塑料特征 | 微塑料粒径 | 病理学变化 | 参考文献 |
---|---|---|---|---|
发炎 | 荧光和原始PS颗粒 | 5 、20 μm | 诱发肝脏炎症;对神经传递诱发副作用 | [ |
未改性/羧基化PS颗粒 | 20、44、500、1 000 nm | 白介素⁃6和白介素⁃8表达上调;多种人类恶性肿瘤的炎症增强 | [ | |
羧基和氨基改性的PS颗粒 | 120 nm | 清道夫受体表达改变;M2巨噬细胞增加了白介素⁃10的产生 | [ | |
PS颗粒 | 202、535 nm | A549上皮细胞的白介素⁃8表达上调;人A549肺细胞诱发炎症 | [ | |
氧化应激与细胞凋亡 | PVC和聚甲基丙烯酸甲酯颗粒 | 120、140 nm | 细胞活力降低;三磷酸腺苷(ATP)减少;活性氧(ROS)浓度增加 | [ |
胺改性PS颗粒 | 60 nm | 与黏蛋白具有很强的相互作用和聚集性;诱导所有肠上皮细胞凋亡 | [ | |
未改性或改性的PS颗粒 | 50、100 nm | 诱导人体细胞的凋亡 | [ | |
代谢稳态 | 荧光和原始PS颗粒 | 5 μm | 诱导肠道微生物菌群生态失调、肠道屏障功能障碍和代谢紊乱 | [ |
PS颗粒 | 0.5、5、20、50 μm | 能量和脂质代谢紊乱 | [ | |
PS颗粒 | 30 nm | 阻断囊泡运输和细胞分裂相关蛋白的分布 | [ | |
带负电荷的PS颗粒 | 20 nm | 改变离子通道功能和离子稳态 | [ |
1 | LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362⁃374. |
2 | 田立平, 王学琳, 王晓波, 等. 水环境中微塑料污染特性及去除技术研究进展[J]. 山东建筑大学学报, 2020, 35(4): 60⁃66. |
TIAN L P, WANG X L, WANG X B, et al. Research progress of micro plastic pollution characteristics and removal technology in aquatic environment[J]. Journal of Shandong Jianzhu University, 2020, 35(4): 60⁃66. | |
3 | 张子琪, 高淑红, 康园园, 等. 中国水环境微塑料污染现状及其潜在生态风险[J]. 环境科学学报, 2020, 40(10): 3 574⁃3 581. |
ZHANG Z Q, GAO S H, KANG Y Y, et al. Current status of microplastics contamination in China’s water environment and its potential ecological risks[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3 574⁃3 581. | |
4 | SANA S S, DOGIPARTHI L K, GANGADHAR L, et al. Effects of microplastics and nanoplastics on marine environment and human health[J]. Environmental Science and Pollution Research, 2020, 27(36): 44 743⁃44 756. |
5 | DONG X S, LIU X B, HOU Q L, et al. From natural environment to animal tissues: A review of microplastics (nanoplastics) translocation and hazards studies[J]. Science of the Total Environment, 2023, 855: 158686. |
6 | DING R R, TONG L, ZHANG W C. Microplastics in freshwater environments: sources, fates and toxicity[J]. Water Air and Soil Pollution, 2021, 232(5): 181. |
7 | NAWALAGE N S K, BELLANTHUDAWA B K A. Synthetic polymers in personal care and cosmetics products (PCCPs) as a source of microplastic (MP) pollution[J]. Marine Pollution Bulletin, 2022, 182: 113927. |
8 | LASKAR N, KUMAR U. Plastics and microplastics: A threat to environment[J]. Environmental Technology & Innovation, 2019, 14: 100352. |
9 | AKANYANGE S N, ZHANG Y, ZHAO X, et al. A holistic assessment of microplastic ubiquitousness: Pathway for source identification in the environment[J]. Sustainable Production and Consumption, 2022, 33: 113⁃145. |
10 | 葛琦, 周志文, 刘慧婷. 天然水体中微塑料的来源、分布及毒性效应[J]. 环境保护与循环经济, 2022, 42(2): 55⁃59. |
11 | 韩书宇, 付英, 张游, 等. 城市污水中微塑料特性、检测及去除[J]. 工业用水与废水, 2021, 52(5): 1⁃5. |
HAN S Y, FU Y, ZHANG Y, et al. Characteristics, detection and removal of microplastics in urban sewage[J]. Industrial Water & Wastewater, 2021, 52(5): 1⁃5. | |
12 | JIANG C B, YIN L S, LI Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91⁃98. |
13 | LESTARI P, TRIHADININGRUM Y, WIJAYA B A, et al. Distribution of microplastics in Surabaya River, Indonesia[J]. Science of the Total Environment, 2020, 726: 138560. |
14 | RODRIGUES M O, ABRANTES N, GONCALVES F J M, et al. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antua River, Portugal)[J]. Science of the Total Environment, 2018, 633: 1 549⁃1 559. |
15 | ZAKI M R M, YING P X, ZAINUDDIN A H, et al. Occurrence, abundance, and distribution of microplastics pollution: an evidence in surface tropical water of Klang River estuary, Malaysia[J]. Environmental Geochemistry and Health, 2021, 43(9): 3 733⁃3 748. |
16 | PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166⁃175. |
17 | DI M X, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616: 1 620⁃1 627. |
18 | WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1 369⁃1 374. |
19 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3 333⁃3 343. |
CHEN X X, LIU M, CHEN Y. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3 333⁃3 343. | |
20 | SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711⁃719. |
21 | HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707: 135601. |
22 | LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China[J]. Science of the Total Environment, 2018, 644: 375⁃381. |
23 | TA A T, BABEL S, HAARSTICK A. Microplastics contamination in a high population density area of the Chao Phraya River, Bangkok[J]. Journal of Engineering and Technological Sciences, 2020, 52(4): 534⁃545. |
24 | OSORIO E D, TANCHULING M A N, DIOLA M. Microplastics occurrence in surface waters and sediments in Five River Mouths of Manila Bay[J]. Frontiers in Environmental Science, 2021, 9: 719274. |
25 | 刘禹, 史小红, 张生, 等. 乌梁素海低密度微塑料聚合物沉降规律[J]. 环境科学, 2022, 43(3): 1 463⁃1 471. |
LIU Y, SHI X H, ZHANG S, et al. Deposition law of low⁃density microplastics aggregation in Wuliangsu Lake[J]. Environmental Science, 2022, 43: 1 463⁃1 471. | |
26 | BANDOW N, WILL V, WACHTENDORF V, et al. Contaminant release from aged microplastic[J]. Environmental Chemistry, 2017, 14(6): 394⁃405. |
27 | LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation[J]. Environmental Science & Technology, 2020, 54(14): 8 719⁃8 727. |
28 | 王俊杰, 陈晓晨, 李权达, 等. 老化作用对微塑料吸附镉的影响及其机制[J]. 环境科学, 2022, 43(4): 2 030⁃2 038. |
WANG J J, CHEN X C, LI Q D, et al. Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J].Environmental Science, 2022, 43(4): 2 030⁃2 038. | |
29 | MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. |
30 | 刘洁, 代雨, 姚全威, 等. 水环境中微塑料分布现状及特征研究进展[J]. 广东化工, 2020, 47(16): 93⁃94. |
LIU J, DAI Y, YAO Q W, et al. Distribution status and characteristics of microplastics in water environment: a review[J]. Guangdong Chemical Industry, 2020, 47(16): 93⁃94. | |
31 | COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2 588⁃2 597. |
32 | 刘治君, 杨凌肖, 王琼, 等. 微塑料在陆地水环境中的迁移转化与环境效应[J]. 环境科学与技术, 2018, 41(4): 59⁃65,90. |
LIU Z J, YANG L X, WANG Q, et al. Migration and transformation of microplastics in terrestrial waters and effects on eco⁃environment[J].Environmental Science & Technology, 2018, 41(4): 59⁃65,90. | |
33 | SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246⁃265. |
34 | JABEEN K, LI B W, CHEN Q Q, et al. Effects of virgin microplastics on goldfish (Carassius auratus)[J]. Chemosphere, 2018, 213: 323⁃332. |
35 | WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organi⁃sms: A review[J]. Environmental Pollution, 2013, 178: 483⁃492. |
36 | POSSATTO F E, BARLETTA M, COSTA M F, et al. Plastic debris ingestion by marine catfish: An unexpected fisheries impact[J]. Marine Pollution Bulletin, 2011, 62(5): 1 098⁃1 102. |
37 | 马维宇, 韦斯. 环境中的微塑料:赋存、检测及其危害[J]. 环境监控与预警, 2020, 12(5): 68⁃74. |
MA W Y, WEI S. Microplastics in the environment: occurrence, detection and harm[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 68⁃74. | |
38 | ROCHMAN C M, HOH E, KUROBE T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263. |
39 | 刘倡君, 罗专溪, 闫钰, 等. 九龙江口红树林湿地表层沉积物中微塑料赋存特征与重金属的关系[J]. 环境科学, 2022, 43(1): 239⁃246. |
LIU C J, LUO Z X, YAN Y, et al. Occurrence characteristics of microplastics in mangrove sediments in the Jiu⁃long River Estuary and the association with heavy metals[J]. Environmental Science, 2022, 43(1): 239⁃246. | |
40 | LU K, QIAO R X, AN H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202: 514⁃520. |
41 | 王林, 王姝歆, 曾祥英, 等. 老化作用对微塑料吸附四环素的影响及其机制[J]. 环境科学,2022,10: 4 511⁃4 521. |
WANG L, WANG S X, ZENG X Y, et al. Effect of a⁃ging on adsorption of tetracycline by microplastics and the mechanisms[J]. Environmental Science,2022,10: 4 511⁃4 521. | |
42 | HAN Y, ZHOU W S, TANG Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel mytilus coruscus and induce synergistic immunotoxic effects[J]. Science of the Total Environment, 2021, 770: 145273. |
43 | 胡嘉敏, 左剑恶, 李金波, 等. 微塑料对鲫鱼生长、肝脏损伤和肠道微生物组成的影响[J]. 环境科学, 2022, 43(7): 3 664⁃3 671. |
HU J M, ZUO J E, LI J B, et al. Effects of microplastic exposure on crucian growth, liver damage,and gut microbiome composition[J]. Environmental Science, 2022, 43(7): 3 664⁃3 671. | |
44 | SUN B B, LIU J, ZHANG Y Q, et al. Leaching of polybrominated diphenyl ethers from microplastics in fish oil: Kinetics and bioaccumulation[J]. Journal of Hazardous Materials, 2021, 406: 124726. |
45 | JANG M, SHIM W J, HAN G M, et al. Styrofoam debris as a source of hazardous additives for marine organisms[J]. Environmental Science & Technology, 2016, 50(10): 4 951⁃4 960. |
46 | HAFEZI S A, ABDEL⁃RAHMAN W M. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy[J]. Current Molecular Pharmacology, 2019, 12(3): 230⁃238. |
47 | CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1 312⁃1 321. |
48 | LU I C, CHAO H R, MANSOR W N W, et al. Levels of phthalates, bisphenol⁃a, nonylphenol, and microplastics in fish in the estuaries of northern Taiwan and the impact on human health[J]. Toxics, 2021, 9(10): 246. |
49 | BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2 388⁃2 392. |
50 | MATHIEU⁃DENONCOURT J, MARTYNIUK C J, LOUGHERY J R, et al. Lethal and sublethal effects of phthalate diesters in Silurana tropicalis larvae[J]. Environmental Toxicology and Chemistry, 2016, 35(10): 2 511⁃2 522. |
51 | MENG J, ZHANG Q, ZHENG Y F, et al. Plastic waste as the potential carriers of pathogens[J]. Current Opinion in Food Science, 2021, 41: 224⁃230. |
52 | 崔铁峰, 廖晨延, 崔彤彤, 等. 水环境中微塑料的危害及防治[J]. 河北渔业, 2020, 11: 55⁃59. |
53 | IMRAN M, DAS K R, NAIK M M. Co⁃selection of multi⁃antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat[J]. Chemosphere, 2019, 215: 846⁃857. |
54 | GOLDSTEIN M C, CARSON H S, ERIKSEN M. Relationship of diversity and habitat area in North Pacific plastic⁃associated rafting communities[J]. Marine Biology, 2014, 161(6): 1 441⁃1 453. |
55 | DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 46687. |
56 | FORTE M, IACHETTA G, TUSSELLINO M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in Vitro, 2016, 31: 126⁃136. |
57 | PRIETL B, MEINDL C, ROBLEGG E, et al. Nano⁃sized and micro⁃sized polystyrene particles affect phagocyte function[J]. Cell Biology and Toxicology, 2014, 30(1): 1⁃16. |
58 | FUCHS A K, SYROVETS T, HAAS K A, et al. Carboxyl⁃ and amino⁃functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets[J]. Biomaterials, 2016, 85: 78⁃87. |
59 | BROWN D M, WILSON M R, MACNEE W, et al. Size⁃dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3): 191⁃199. |
60 | MAHADEVAN G, VALIYAVEETTIL S. Understan⁃ding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK⁃21 cell line[J]. Scientific Reports, 2021, 11(1): 2089. |
61 | INKIELEWICZ⁃STEPNIAK I, TAJBER L, BEHAN G, et al. The role of mucin in the toxicological impact of polystyrene nanoparticles[J]. Materials, 2018, 11(5): 724. |
62 | RUENRAROENGSAK P, TETLEY T D. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells[J]. Particle and Fibre Toxicology, 2015, 12: 19. |
63 | JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649: 308⁃317. |
64 | LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631/632: 449⁃458. |
65 | XIA L, GU W H, ZHANG M Y, et al. Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation[J]. Particle and Fibre Toxicology, 2016, 13: 63. |
66 | MCCARTHY J, GONG X, NAHIRNEY D, et al. Polystyrene nanoparticles activate ion transport in human airway epithelial cells[J]. International Journal of Nanomedicine, 2011, 6: 1 343⁃1 356. |
67 | LU S, LIU L B, YANG Q X, et al. Removal characteri⁃stics and mechanism of microplastics and tetracycline composite pollutants by coagulation process[J]. Science of the Total Environment, 2021, 786: 147508. |
68 | ZHOU G Y, WANG Q G, LI J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism[J]. Science of the Total Environment, 2021, 752: 141837. |
69 | ZHANG Y J, ZHOU G Y, YUE J P, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagu⁃lant aids[J]. Science of the Total Environment, 2021, 800: 149589. |
70 | XUE J K, PELDSZUS S, VAN DYKE M I, et al. Removal of polystyrene microplastic spheres by alum⁃based coagulation⁃flocculation⁃sedimentation (CFS) treatment of surface waters[J]. Chemical Engineering Journal, 2021, 422: 130023. |
71 | RAJALA K, GRONFORS O, HESAMPOUR M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine⁃based chemicals[J]. Water Research, 2020, 183: 116045. |
72 | MA B W, XUE W J, DING Y Y, et al. Removal characteristics of microplastics by Fe⁃based coagulants during drinking water treatment[J]. Journal of Environmental Sciences, 2019, 78: 267⁃275. |
73 | PIVOKONSKY M, PIVOKONSKA L, NOVOTNA K, et al. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment[J]. Science of the Total Environment, 2020, 741: 140236. |
74 | MA B W, XUE W J, HU C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration du⁃ring drinking water treatment[J]. Chemical Engineering Journal, 2019, 359: 159⁃167. |
75 | WANG Z F, LIN T, CHEN W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700: 134520. |
76 | SILLANPAA M, NCIBI M C, MATILAINEN A, et al. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review[J]. Chemosphere, 2018, 190: 54⁃71. |
77 | ZHAO L, DENG J H, SUN P Z, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis[J]. Science of the Total Environment, 2018, 627: 1 253⁃1 263. |
78 | NABI I, BACHA A U R, LI K J, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J]. Iscience, 2020, 23(7): 101326. |
79 | UHEIDA A, MEJIA H G, ABDEL⁃REHIM M, et al. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system[J]. Journal of Hazardous Materials, 2021, 406: 124299. |
80 | EBRAHIMBABAIE P, YOUSEFI K, PICHTEL J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status[J]. Science of the Total Environment, 2022, 806: 150603. |
81 | ARIZA⁃TARAZONA M C, VILLARREAL⁃CHIU J F, HERNANDEZ⁃LOPEZ J M, et al. Microplastic pollution reduction by a carbon and nitrogen⁃doped TiO2: Effect of pH and temperature in the photocatalytic degradation process[J]. Journal of Hazardous Materials, 2020, 395: 122632. |
82 | KANG J, ZHOU L, DUAN X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3): 745⁃758. |
83 | LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3 579⁃3 588. |
84 | HU K S, ZHOU P, YANG Y Y, et al. Degradation of microplastics by a thermal Fenton reaction[J]. ACS ES&T Engineering, 2022, 2(1): 110⁃120. |
85 | MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro⁃Fenton⁃like system with a TiO2/graphite cathode[J]. Journal of Hazardous Materials, 2020, 399: 123023. |
86 | MA D S, YI H, LAI C, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. |
87 | ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110⁃121. |
88 | KUNDU A, SHETTI N P, BASU S, et al. Identification and removal of micro⁃ and nano⁃plastics: Efficient and cost⁃effective methods[J]. Chemical Engineering Journal, 2021, 421: 129816. |
89 | TALVITIE J, MIKOLA A, KOISTINEN A, et al. Solutions to microplastic pollution⁃removal of microplastics from wastewater effluent with advanced wastewater treatment technologies[J]. Water Research, 2017, 123: 401⁃407. |
90 | LARES M, NCIBI M C, SILLANPAA M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236⁃246. |
91 | LI L, LIU D, SONG K, et al. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water[J]. Marine Pollution Bulletin, 2020, 150: 110724. |
92 | YU H R, DU C Y, QU F S, et al. Efficient biostimulants for bacterial quorum quenching to control fouling in MBR[J]. Chemosphere, 2022, 286: 131689. |
93 | DENG L J, GUO W S, NGO H H, et al. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community[J]. Bioresource Technology, 2020, 312: 123612. |
[1] | 白水泉, 边佳诚, 王乐园, 杨家华, 邓亚峰. 水环境微塑料去除技术的研究进展[J]. 中国塑料, 2022, 36(8): 166-175. |
[2] | 郭雨文, 曾蓓, 高星, 王攀, 任连海. PET微塑料对污泥和厨余垃圾共消化的影响[J]. 中国塑料, 2022, 36(7): 51-60. |
[3] | 汤庆峰, 李琴梅, 王佳敏, 张裕祥, 高峡. 显微⁃傅里叶变换红外光谱鉴别分析微塑料[J]. 中国塑料, 2021, 35(8): 172-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||