1 |
DILBEROGLU U M, GHAREHPAPAGH B, YAMAN U, et al. The role of additive manufacturing in the era of industry 4.0[J]. Procedia Manufacturing, 2017, 11: 545⁃554.
|
2 |
卢秉恒. 增材制造技术—现状与未来 [J].中国机械工程, 2020, 31(1): 19⁃23.
|
|
LU B H. Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19⁃23.
|
3 |
RAVOORI D, LOWERY C, PRAJAPATI H, et al. Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion based additive manufacturing [J]. Polymer Testing, 2019, 73: 439⁃446.
|
4 |
Costa S F, Duarte F M, Covas J A. Estimation of filament temperature and adhesion development in fused deposition techniques [J]. Journal of Materials Processing Technology, 2016, 245: 167⁃179.
|
5 |
S⁃H AHN, MONTERO M, ODELL D, et al. Anisotropic material properties of fused deposition modeling ABS [J]. Rapid Prototyping Journal, 2002, 8: 248⁃257.
|
6 |
GEBISA A W, LEMU H G. Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085 [J]. Procedia Manufacturing, 2019, 30: 331⁃338.
|
7 |
ABBOTT A C, TANDON G P, BRADFORD R L, et al. Process⁃structure⁃property effects on ABS bond strength in fused filament fabrication [J]. Additive manufacturing, 2018, 19: 29⁃38.
|
8 |
CAI L, BYRD P R, ZHANG H, et al. Effect of printing orientation on strength of 3d printed abs plastics [C]//TMS 2016 145 th Annual Meeting & Exhibition: Supplemental Proceedings. Springer International Publishing, 2016: 199⁃204.
|
9 |
翟晓雅, 陈发来. 分形模型的3D打印路径规划 [J].计算机辅助设计与图形学学报, 2018, 30(6): 1 123⁃1 135.
|
|
ZHAI X Y, CHEN F L. 3D printing path planning of fractal models [J]. Journal of Computer⁃Aided Design & Computer Graphics 2018, 30(6): 1 123⁃1 135.
|
10 |
韩兴国, 宋小辉, 殷鸣, 等. 熔融沉积式3D打印路径优化算法研究 [J].农业机械学报, 2018, 49(3): 393⁃401.
|
|
HAN X G, SONG X H, YIN M, et al. Path optimization algorithm of 3D printing based on fused deposition modeling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 393⁃401.
|
11 |
HAN P, TOFANGCHI A, DESHPANDE A, et al. An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre⁃deposition heating [J]. Procedia Manufacturing, 2019, 34: 672⁃677.
|
12 |
ALBERTO A, SANGLAE K, JÖRG D, et al. Hybrid material extrusion 3D printing to strengthen interlayer adhesion through hot rolling [J]. Additive Manufacturing, 2022, 55: 102773.
|
13 |
RAVOORI D, PRAJAPATI H, TALLURU V, et al. Nozzle⁃integrated pre⁃deposition and post⁃deposition heating of previously deposited layers in polymer extrusion based additive manufacturing [J]. Additive Manufacturing, 2019, 28: 719⁃726.
|
14 |
DU J, WEI Z, WANG X, et al. An improved fused deposition modeling process for forming large⁃size thin⁃walled parts [J]. Journal of Materials Processing Technology, 2016, 234: 332⁃341.
|
15 |
LEE J E, PARK S J, SON Y, et al. Mechanical reinforcement of additive⁃manufactured constructs using in situ auxiliary heating process [J]. Additive Manufacturing, 2021, 43: 101995.
|
16 |
BENGFORT P, STRACKE D, KüNNE B. Establishment of a rotary print head to effect residual stresses and interlayer bonding in an FLM⁃Process [J]. Journal of Manufacturing and Materials Processing, 2021, 5(3): 82.
|
17 |
MAIDIN S, WONG J, MOHAMED A S, et al. Vacuum fused deposition modelling system to improve tensile strength of 3D printed parts [J]. Journal of Fundamental and Applied Sciences, 2017, 9(6): 839⁃853.
|
18 |
MAZLAN S N H, ALKAHARI M R, MAIDIN N A, et al. Influence of inert gas assisted 3D printing machine on the surface roughness and strength of printed component [J]. Proceedings of Mechanical Engineering Research Day, 2018, 2018: 154⁃155.
|
19 |
LI G, ZHAO J, JIANG J, et al. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 2 747⁃2 755.
|
20 |
SWEENEY C B, BURNETTE M, POSPISIL M J, et al. Dielectric barrier discharge applicator for heating carbon nanotube⁃loaded interfaces and enhancing 3D⁃printed bond strength [J]. Nano Letters, 2020, 20(4): 2 310⁃2 315.
|
21 |
LIU J L, LIM E W L, SUN Z P, et al. Improving strength and impact resistance of 3D printed components with helicoidal printing direction [J]. International Journal of Impact Engineering, 2022, 169: 104320.
|
22 |
YIN S, YANG R, HUANG Y, et al. Toughening mechanism of coelacanth⁃fish⁃inspired double⁃helicoidal composites [J]. Composites Science and Technology, 2021, 205: 108650.
|
23 |
SUN Y, TIAN W, ZHANG T, et al. Strength and toughness enhancement in 3D printing via bioinspired tool path [J]. Materials & Design, 2020, 185: 108239.
|
24 |
YIN S, CHEN H, YANG R, et al. Tough nature⁃inspired helicoidal composites with printing⁃induced voids [J]. Cell Reports Physical Science, 2020, 1(7): 100109.
|
25 |
LEVENHAGEN N P, DADMUN M D. Reactive processing in extrusion⁃based 3D printing to improve isotropy and mechanical properties [J]. Macromolecules, 2019, 52(17): 6 495⁃6 501.
|
26 |
YAMAMOTO B E, TRIMBLE A Z, MINEI B, et al. Development of multifunctional nanocomposites with 3⁃D printing additive manufacturing and low graphene loading [J]. Journal of Thermoplastic Composite Materials, 2019, 32(3): 383⁃408.
|
27 |
APPUHAMILLAGE G A, REAGAN J C, KHORSANDI S, et al. 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels⁃Alder reaction [J]. Polymer Chemistry, 2017, 8: 2 087⁃2 092.
|
28 |
LEVENHAGEN N P, DADMUN M D. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products [J]. Polymer, 2018, 152: 35⁃41.
|
29 |
PENG F, ZHAO Z, XIA X, et al. Enhanced impact resistance of three⁃dimensional⁃printed parts with structured filaments [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16 087⁃16 094.
|
30 |
PENG F, JIANG H, WOODS A, et al. 3D Printing with core–shell filaments containing high or low density polyethylene shells [J]. ACS Applied Polymer Materials, 2019, 1(2): 275⁃285.
|
31 |
IVANOVA O S, WILLIAMS C B, CAMPBELL T A. Additive manufacturing (AM) and nanotechnology: promises and challenges [J]. Rapid Prototyping Journal, 2013, 19: 353⁃364.
|
32 |
BIRON M. Thermoplastics and thermoplastic composites [M]. Norwich, NY:William Andrew, 2018: 1 033⁃1 036.
|
33 |
SATHISHKUMAR T P, SATHEESHKUMAR S, NAVEEN J. Glass fiber⁃reinforced polymer composites–a review [J]. Journal of Reinforced Plastics and Composites, 2014, 33(13): 1 258⁃1 275.
|
34 |
BIRON M. Thermoplastics and thermoplastic composites: technical information for plastics users [M]. Amsterdam, Netherlands: Elsevier, 2007: 4⁃8.
|
35 |
TEKINALP H L, KUNC V, VELEZ⁃GARCIA G M, et al. Highly oriented carbon fiber–polymer composites via additive manufacturing [J]. Composites Science and Technology, 2014, 105: 144⁃150.
|
36 |
KARSLI N G, AYTAC A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites [J]. Composites Part B, 2013, 51: 270⁃275.
|
37 |
ZHONG W, LI F, ZHANG Z, et al. Short fiber reinforced composites for fused deposition modeling [J]. Materials Science & Engineering A, 2001, 301(2): 125⁃130.
|
38 |
FU S⁃Y, LAUKE B, MÄDER E, et al. Tensile properties of short⁃glass⁃fiber⁃ and short⁃carbon⁃fiber⁃reinforced polypropylene composites [J]. Composites Part A, 2000, 31(10): 1 117⁃1 125.
|
39 |
ZHONG W, LI F, ZHANG Z G, et al. Short fiber reinforced composites for fused deposition modeling [J]. Materials Science and Engineering A⁃structural Materials Properties Microstructure and Processing, 2001, 301: 125⁃130.
|
40 |
NING F, CONG W, HU Z, et al. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements [J]. Journal of Composite Materials, 2017, 51: 3 733⁃3 742.
|
41 |
KLIFT F V D, KOGA Y, TODOROKI A, et al. 3D Printing of continuous carbon fibre reinforced thermo⁃plastic (CFRTP) tensile test specimens [J]. Open Journal of Composite Materials, 2016, 6: 18⁃27.
|
42 |
TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites [J]. Composites Part A, 2016, 88: 198⁃205.
|
43 |
SHI K, YAN Y, MEI H, et al. 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength [J]. Additive manufacturing, 2021, 39: 101882.
|
44 |
CAMINERO M A, CHACÓN J M, GARCÍA⁃MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling [J]. Composites Part B: Engineering, 2018, 148: 93⁃103.
|
45 |
PENG Y, WU Y, WANG K, et al. Synergistic reinforcement of polyamide⁃based composites by combination of short and continuous carbon fibers via fused filament fabrication [J]. Composite Structures, 2019, 207: 232⁃239.
|
46 |
PAPA I, SILVESTRI A T, RICCIARDI M R, et al. Effect of fibre orientation on novel continuous 3D⁃Printed fibre⁃reinforced composites [J]. Polymers, 2021, 13(15): 2524.
|
47 |
GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics [J]. Materials & Design, 2018, 137: 79⁃89.
|
48 |
RYOSUKE M, MASAHITO U, MASAKI N, et al. Three⁃dimensional printing of continuous⁃fiber composites by in⁃nozzle impregnation [J]. Scientific reports, 2016, 6(1): 23058.
|
49 |
LIU S, LI Y, LI N. A novel free⁃hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures [J]. Materials & Design, 2018, 137: 235⁃244.
|
50 |
GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design [J]. Additive manufacturing, 2017, 16: 1⁃11.
|
51 |
JONES R, HAUFE P, SELLS E, et al. RepRap – the replicating rapid prototyper [J]. Robotica, 2011, 29: 177⁃ 191.
|
52 |
LABOSSIERE J E, ESHELMAN M E. Rapid prototyping system with controlled material feedstock: U.S. Patent 7,384,255 [P]. 2008⁃6⁃10.
|
53 |
GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design [J]. Additive manufacturing, 2017, 16: 1⁃11.
|
54 |
闫东升, 曹志清, 孔改荣. FDM工艺送丝驱动机构的摩擦驱动力分析 [J]. 北京化工大学学报(自然科学版), 2003, 30(3): 71.
|
|
YAN D S, CAO Z Q, KONG G R. Analysis of the driving force by friction in a driving structure of FDM[J]. Journal of Beijing University of Chemistry Technology, 2003, 30(3): 71.
|
55 |
汪甜田. FDM送丝机构的研究与设计 [D]. 武汉:华中科技大学, 2007.
|
56 |
BEZUKLADNIKOV I I, TRUSHNIKOV D N, SHILOVA Y A, et al. Study the possibility of improving induction heating of FDM 3D printer nozzle [J]. International Journal of Mechanical Engineering and Technology, 2018, 9(9): 1 463⁃1 474.
|
57 |
汪传生, 王虎子, 蔡宁, 等. 粉体喂料3D打印机喷头装置的温度分析及优化设计 [J].中国塑料, 2018, 32(2): 98⁃102.
|
|
WANG C S, WANG H Z, CAI N, et al. Temperature analysis and optimization design of nozzles of powder feeding 3D printer [J]. China Plastics, 2018, 32(2): 98⁃102.
|
58 |
SUKINDAR N A, MOHD ARIFFIN M K A, BAHARUDIN B T H T BIN, et al. Comparison on dimensional accuracy using a newly developed nozzle for Open⁃source 3D printer [J]. Applied Mechanics and Materials, 2016, 859: 15⁃19.
|
59 |
GO J, HART A J. Fast desktop⁃scale extrusion additive manufacturing [J]. Additive Manufacturing, 2017, 18: 276⁃284.
|
60 |
ILYéS K. Three⁃dimensional printing by fused deposition modeling (3dp⁃fdm) in pharmaceutics [J]. Farmacia, 2020, 68: 586⁃596.
|
61 |
HE K, YANG Z, BAI Y, et al. Intelligent fault diagnosis of delta 3D printers using attitude sensors based on support vector machines [J]. Sensors (Basel, Switzerland), 2018, 18(4): 1298.
|
62 |
YADAV D, CHHABRA D, GARG R K, et al. Optimization of FDM 3D printing process parameters for multi⁃material using artificial neural network [J]. Materials Today: Proceedings, 2020, 21: 1 583⁃1 591.
|
63 |
DUAN M, YOON D, OKWUDIRE C E. A limited⁃preview filtered B⁃spline approach to tracking control – With application to vibration⁃induced error compensation of a 3D printer [J]. Mechatronics, 2018, 56: 287⁃296.
|
64 |
张文君, 方辉, 袁泽林, 等. 桌面型FDM 3D打印设备的优化设计与精度分析 [J]. 机械, 2018, 45(1): 5⁃10.
|
|
ZHANG W J, FANG H, YUAN Z L, et al. Optimization design and precision analysis of desktop FDM 3D printing equipment [J]. Machinery, 2018, 45(1): 5⁃10.
|
65 |
Sollmann K S, Jouaneh M K, Lavender D. Dynamic modeling of a two⁃axis, parallel, H⁃frame⁃type XY positioning system [J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(2): 280⁃290.
|
66 |
CAPOTE G A M, OEHLMANN P, CAMPOS J C, et al. Trends in force and print speed in material extrusion [J]. Additive Manufacturing, 2021, 46: 102141.
|
67 |
J⁃W TSENG, LIU C⁃Y, YEN Y⁃K, et al. Screw extrusion⁃based additive manufacturing of PEEK [J]. Materials & Design, 2018, 140: 209⁃221.
|
68 |
罗攀. 熔融挤压快速成型机机构与挤出的研究 [D]. 成都:西南交通大学, 2015.
|
69 |
KUMAR N, JAIN P K, TANDON P, et al. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA) [J]. Journal of Manufacturing Processes, 2018, 35: 317⁃326.
|
70 |
HONG S I, SANCHEZ C M, DU H Y, et al. Fabrication of 3D printed metal structures by use of high⁃viscosity Cu paste and a screw extruder [J]. Journal of Electronic Materials, 2015, 44: 836⁃841.
|
71 |
王天明, 习俊通, 金烨. 颗粒体进料微型螺旋挤压堆积喷头的设计 [J]. 机械工程学报, 2006, 42(9): 178⁃184.
|
|
WANG T M, XI J T, JIN Y. Design of mini⁃screw⁃extruding deposition head fed based on bulk material in granulated form [J]. Chinese Journal of Mechanical Engineering, 2006, 42(9): 178⁃184.
|
72 |
CAPOTE G A M, OEHLMANN P E V, CAMPOS J C B, et al. Trends in force and print speed in material extrusion [J]. Additive Manufacturing, 2021, 46: 102141.
|
73 |
王静. 一种双输出多向3D打印并联机器人的设计与分析 [D]. 北京: 北京交通大学, 2018.
|
74 |
严铜. 多喷头 3 D打印机并行打印的方法:中国,CN110815812A [P]. 2020⁃02⁃21.
|
75 |
李文涛. 大型FDM⁃3D打印系统设计及关键技术研究 [D]. 武汉:湖北工业大学, 2020.
|
76 |
PEKKANEN A M, ZAWASKI C, STEVENSON JR A T, et al. Poly(ether ester) ionomers as water⁃soluble polymers for material extrusion additive manufacturing processes [J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12 324⁃12 331.
|
77 |
王琛, 刘露杨. 新型可调流量3D打印喷头 [J]. 技术与市场, 2018, 25(10): 103.
|
78 |
SON J, YUN S, PARK K, et al. Isotropic 3d printing using material extrusion of thin shell and post⁃casting of reinforcement core [J]. SSRN Electronic Journal, 2022, 58: 102974.
|
79 |
KAZMER D O, COLON A R. Injection printing: Additive molding via shell material extrusion and filling [J]. Additive Manufacturing, 2020, 36: 101469.
|
80 |
鉴冉冉, 贾维辉, 郭鹏, 等. 一种注射 3 D 打印装置: 中国,CN113211785A [P]. 2021⁃08⁃06.
|
81 |
鉴冉冉, 林广义, 史忠鹤, 等. 一种桌面级 3 D 打印和复印装置及方法: 中国, CN112571791A [P]. 2021⁃03⁃30.
|
82 |
鉴冉冉, 林广义, 史忠鹤, 等. 一种具有增强骨架的异步 3 D 打印方法及装置: 中国, CN111823581A [P]. 2020⁃10⁃27.
|