
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (10): 56-62.DOI: 10.19491/j.issn.1001-9278.2023.10.008
收稿日期:
2023-05-16
出版日期:
2023-10-26
发布日期:
2023-10-23
通讯作者:
龙春光(1965—),博士,教授,硕士生导师,研究方向为先进耐磨复合材料的设计、制造与应用 ,642426853@qq.com
XIAO Weigen, LONG Chunguang(), WANG Ke, MIN Jianxin
Received:
2023-05-16
Online:
2023-10-26
Published:
2023-10-23
Contact:
LONG Chunguang
E-mail:642426853@qq.com
摘要:
为了解决聚甲醛(POM)导热性差的问题,在POM中加入了铜纤维(COF)和玄武岩纤维(BF),通过挤出⁃注塑工艺分别制备了POM/COF、 POM/COF/BF复合材料;并利用ABAQUS软件验证了COF对POM导热性能的影响。结果表明,铜纤维使POM的热导率达到0.39 W/mK;在力学测试中,COF略微增加了POM的刚度,但却降低了POM的拉伸强度;随着BF含量的增加,POM/COF复合材料的热导率随之增加,在15 %含量时达到最大,约为0.5 W/mK,比纯POM的热导率提高了约50 %;同时BF的加入使POM的刚度大幅度增加,最大提高了约200 %。通过ABAQUS稳态热传导仿真,发现含铜纤维的复合材料表面温度更低,热流更易通过纤维传递至低温区域。
中图分类号:
肖伟根, 龙春光, 王轲, 闵建新. 高导热聚甲醛复合材料性能研究及热传导模拟[J]. 中国塑料, 2023, 37(10): 56-62.
XIAO Weigen, LONG Chunguang, WANG Ke, MIN Jianxin. Study on performance and thermal conduction simulation of highly thermally conductive polyoxymethylene composite materials[J]. China Plastics, 2023, 37(10): 56-62.
样品 | 密度/g·cm-3 | 冲击强度/ kJ·m-2 |
---|---|---|
POM | 8.291 0±3 | |
CFI | 5.447 3±3 | |
CFI5BF | 4.810 7±3 | |
CFI10BF | 4.579 9±3 | |
CFI15BF | 4.227 8±3 | |
CFI20BF | 4.295 9±3 |
样品 | 密度/g·cm-3 | 冲击强度/ kJ·m-2 |
---|---|---|
POM | 8.291 0±3 | |
CFI | 5.447 3±3 | |
CFI5BF | 4.810 7±3 | |
CFI10BF | 4.579 9±3 | |
CFI15BF | 4.227 8±3 | |
CFI20BF | 4.295 9±3 |
1 | Liu Q, Luo W, Zhou S, et al. Tribological behavior and morphology of PTFE particulate⁃reinforced POM matrix composites[J]. J Polym Eng, 2017, 37(3): 227⁃237. |
2 | Dong P, Long C, Peng Y, et al. Effect of coatings on thermal conductivity and tribological properties of aluminum foam/polyoxymethylene interpenetrating composites[J]. J Mater Sci, 2019, 54(20): 13 135⁃13 146. |
3 | Chen J, Cao Y, Li H. Investigation of the friction and wear behaviors of polyoxymethylene/linear low⁃density polyethylene/ethylene⁃acrylic⁃acid blends[J]. Wear, 2006, 260(11/12): 1 342⁃1 348. |
4 | Mai T T, Chinh N T, Baskaran R, et al. Tensile, thermal, dielectric and morphological properties of polyoxymethylene/silica nanocomposites[J]. J Nanosci Nanotechnol, 2018, 18(7): 4 963⁃4 970. |
5 | He J, Zhang L, Li C, et al. The effects of copper and polytetrafluoroethylene (PTFE) on thermal conductivity and tribological behavior of polyoxymethylene (POM) composites[J]. J Macromol Sci Part B⁃Phys, 2011, 50(10): 2 023⁃2 033. |
6 | Pei⁃ran D, Chun⁃guang L, Si⁃jia L, et al. Thermal conductivity and tribological properties of pom composites filled with sulfonated graphene and nano alumina[J]. Surf technol, 2018, 47(10): 116⁃122. |
7 | Luyt A S, Molefi J A, Krump H. Thermal, mechanical and electrical properties of copper powder filled low⁃density and linear low⁃density polyethylene composites[J]. Polym Degrad Stabil, 2006, 91(7): 1 629⁃1 636. |
8 | Ji J, Chiang S⁃W, Liu M, et al. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3⁃D printing[J]. Thermochim Acta, 2020, 690: 178649. |
9 | Cao J P, Zhao X, Zhao J, et al. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles[J]. ACS Appl Mater Inter, 2013, 5(15): 6 915⁃6 924. |
10 | Wang S, Yao Y, Tang C, et al. Mechanical characteristics, constitutive models and fracture behaviors of short basalt fiber reinforced thermoplastic composites under varying strain rates[J]. Compos Pt B⁃Eng, 2021, 218: 108933. |
11 | Suresha B, Sachin D, Shiddalingesha C B. Morphology and physico⁃mechanical properties of basalt fiber reinforced composites[J]. Mater Today: Proc, 2021, 46(18): 9 067⁃9 072. |
12 | Bazan P, Nykiel M, Kuciel S. Tribo‐mechanical properties of composites based on polyoxymethylene reinforced with basalt fiber and silicon carbide whiskers[J]. Polym Eng Sci, 2020, 61(2): 600⁃611. |
13 | España J M, Samper M D, Fages E, et al. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices[J]. Polym Compos, 2013, 34(3): 376⁃381. |
14 | Wang B, Yu S, Mao J, et al. Effect of basalt fiber on tribological and mechanical properties of polyether⁃ether⁃ketone (PEEK) composites[J]. Compos Struct, 2021, 266: 113847. |
15 | Weihong W, Guojun L. The silane coupling agent treatment of basalt fibers reinforced wood⁃plastic composite[J]. Acta Mater Compos Sin, 2013, 30(S1): 315⁃320. |
16 | Li L, Zhaohui L, Yu X, et al. Mechanism and Road Performance of basalt fiber modified by silane coupling agent[J]. Journal of building materials, 2017, 20(4): 623⁃629. |
17 | Jia H, Liu C, Qiao Y, et al. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly(aryl ether nitrile ketone) composites by amino⁃silane coupling agents[J]. Polymer, 2021,230:124028 |
18 | Pan M, Chen Z, Li C. Experiment and simulation analysis of oriented cut copper fiber heat sink for LED water cooling[J]. Case Studies in Thermal Engineering, 2021,24:100878 |
19 | Sun L, Yang Z, Li X. Mechanical and tribological properties of polyoxymethylene modified with nanoparticles and solid lubricants[J]. Polym Eng Sci, 2008, 48(9): 1 824⁃1 832. |
20 | Samyn P, De Baets P, Schoukens G, et al. Wear transitions and stability of polyoxymethylene homopolymer in highly loaded applications compared to small⁃scale testing[J]. Tribol Int, 2007, 40(5): 819⁃833. |
21 | Mirzamohammadi S, Eslami⁃Farsani R, Ebrahimnezhad⁃Khaljiri H. The characterization of the flexural and shear performances of laminated aluminum/ jute⁃basalt fibers epoxy composites containing carbon nanotubes: as multi⁃scale hybrid structures[J]. Thin⁃Walled Structures, 2022,179:109690. |
22 | Chun⁃guang L, Cheng⁃he L, lei C, et al. Mechanical and tribological performance of the short basalt fiber⁃reinforced polyoxymethylene composites[J]. Journal of Changsha University of Science and Technology (Natural Science), 2016, 13(3): 87⁃92. |
23 | Fara S, Pavan A. Fibre orientation effects on the fracture of short fibre polymer composites: on the existence of a critical fibre orientation on varying internal material variables[J]. J Mater Sci, 2004, 39(11): 3 619⁃3 628. |
24 | Hashemi S, Gilbride M T, Hodgkinson J. Mechanical property relationships in glass⁃filled polyoxymethylene[J]. J Mater Sci, 1996, 31(19): 5 017⁃5 025. |
[1] | 肖伟根 龙春光 闵建新 王轲. 高导热聚甲醛复合材料性能研究及热传导模拟[J]. , 2023, 37(10): 56-62. |
[2] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[3] | 刘浪, 栾道成, 胡志华, 文科林, 周新宇, 米书恒, 王正云. 玄武岩纤维和钢纤维含量对树脂基摩擦材料性能的影响研究[J]. 中国塑料, 2022, 36(3): 33-39. |
[4] | 王振华, 杨正, 琚澳迎, 鲁世科, 刘保英, 房晓敏, 丁涛, 徐元清. 不同增容剂对玻璃纤维增强聚甲醛复合材料性能的影响研究[J]. 中国塑料, 2022, 36(1): 53-60. |
[5] | 许可可, 龙春光, 付扬威, 董佩冉, 刘思佳. PTW增强POM/TPU复合材料的制备及性能研究[J]. 中国塑料, 2017, 31(06): 41-45 . |
[6] | 马赞赞, 吴盾, 刘春林, 曹峥, 陆颖, 周安. 金属粉末注射成型用催化脱脂黏结剂POM/PP共混物非等温结晶动力学研究[J]. 中国塑料, 2017, 31(04): 45-50 . |
[7] | 刘俊鹏, 龙春光, 谌磊, 付扬威, 许可可, 董佩冉. 漆籽壳纤维含量对聚甲醛/玄武岩纤维复合材料的力学及摩擦学性能的影响[J]. 中国塑料, 2017, 31(04): 40-44 . |
[8] | 仝蓓蓓, 马亿珠, 张孝彦. 聚甲醛/不同表面修饰二氧化硅纳米复合材料的力学性能、热性能及结晶行为[J]. 中国塑料, 2017, 31(03): 46-52 . |
[9] | 沈玉婷, 伍敏萍, 屈建强, 周武艺, 董先明. 废旧聚甲醛/改性竹纤维复合材料的力学性能研究[J]. 中国塑料, 2016, 30(12): 91-96 . |
[10] | 沈晓洁, 邱桂学. 乙烯-乙酸乙烯酯共聚物增韧改性聚甲醛的研究[J]. 中国塑料, 2016, 30(12): 35-40 . |
[11] | 杨莉, 徐文正, . 聚乳酸/玄武岩纤维复合材料的制备及性能研究[J]. 中国塑料, 2016, 30(11): 48-52 . |
[12] | 张予东, 廖颖玲, 高芸, 常海波. 共聚甲醛的自成核结晶行为[J]. 中国塑料, 2016, 30(09): 14-20 . |
[13] | 吴燕鹏, 王艳飞, 杨阳, 任艳蓉, 张文凯, 房晓敏, 丁涛, 徐元清. 阻燃成炭剂trimer和微胶囊红磷复配阻燃聚甲醛的研究[J]. 中国塑料, 2016, 30(07): 82-87 . |
[14] | 徐翔民, 张豫徽, 李宾杰, 张予东. POM/GF-MWCNTs复合材料的制备及其性能研究[J]. 中国塑料, 2016, 30(04): 76-82 . |
[15] | 何园, 刘保英, 房晓敏, 徐元清, 丁涛. 聚甲醛增强改性研究进展[J]. 中国塑料, 2015, 29(09): 6-11 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||